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Commentary for Teachers

ELEMENTARY FUNCTIONS

Introduction.

The text, Elementary Functions, and an accompanying commentary
were produced by a team of high school and college mathematics -
teachers during the summer of 1959 for fthe School Mathematics Study
Group. It was designed for use in a one-semester course in the

12th grade. Both text and commentary have been completely revised
during the summer of 1960 in the light of continued study and
reflection. The revisions have also taken account of teaching
experience with the original text at six centers during the past
year. We are deeply indebted to the teachers involved for their
many helpful comments. We believe that the text can be taught
effectively in 1its present form to average and above-average
students who elect 12th grade mathematics .

The text follows generally the outline recommended by the
Commission on Mathematics for the first semester of the 12th grade.
(For .a.copy of the Commission's Report, write to College Entrance
Examination Board, c/o Educational Testing Service, Box 592,
Princeton, New Jersey.) At the same time we have not felt bound
to observe the Commission's point of view in all respects. '

The question of the time required to teach the various topics
_included in this course has been the subject of much discussion
and has resulted in relegating to the appendices some material not
prerequisite to what follows. At the same time we feel that this
material is within the grasp of able students and that it will
broaden their mathematical backgrounds appreciably. The additional
. topics provide a means for making differentiated assignments in a
class for which such a procedure would be helpful.



A suggested time schedule for this course is as follows:

Chapter 1 ; 2 weeks
Chapter 2 3 weeks
Chapter 3 3 weeks
Chapter 4 5 weeks
Chapter 5 5 weeks

18 weeks

It is expected that before studying Chapter 5, Circular
Functions, students will normally have had as much trigonometry
as 1s contained in the 11th grade S.M.S.G. text. The chapter can
be taught, however, without this knowledge. Since it 1is desirable
for motivational reasons that the student should be familiar with
the solution of triangles, an appendix has been included which
gives a minimum introduction of this sort. The text thereby
becomes self-contained. Another appendix includes sufficient
material on proving trigonometric identities and solving trigono-
metric equations to give students practice in these arts if it is
deemed necessary. ,

' This ccmmentary includes a general introduction to each
chapter of the text and comments on sections where the procedure
departs from the customary one. The commentary also includes solu~
tions for all exercises, additional suggested problems, and a set
of 1llustrative test questions at the end of each chapter.

Each chapter of the text contains a miscellaneous set of
exercises based on the chapter. Solutions of these exercilses have
been included in this commentary. Since many of the exercises are
time-consuming and will challenge a student's best efforts, teach-~
ers should be Judicious in assigning them. In general, the miscel-
laneous exercises are a review of the chapter and an extension of
the ideas of the chapter to new and, we hope, interesting
situations.
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Chapter 1
FUNCTIONS

A Foreword on Sets.

A modern treatment of functions necessarily uses some of the
elementary vocabulary and notation of sets, and this text presumes
that the students have acquired some familiarity with this lan-
guage in previous courses. Because this presumption may not
always be valid, we include here a summary of the essential infor-
mation.

 Meaning of Set

One of the most natural and familiar iceas of human experience
is that of thinking 2bout and identifying a collection of obJects
by means of a single word. Examples of such words are family, team,
flock, herd, deck (of cards), collection, and so forth. We shall
use the word set when talking about such a collection, and we.shall
restrict ourselves to sets that are clearly enough defined so that
there 1is no possible ambiguity about their members. In other words,
a set 1s a collection of objects, described in such a way that
there is no doubt as to whether a particular object does or does
not belong to the set. .

As an illustration, think of the collection of books, penéils,
tablets, etc., that is in your desk. You can easiiy tell whether
or not a particular object belongs to this set; if an obJect is in
your desk, then it 1is a member, or element, of this set; if an
object is not in your desk then 1t is not an element of this set.

It is important to understand that 1t does not matter what objects
are in your desk; to be an element of this particular set, the
only requirement 1is that an object be in your desk and not some-
where else.

Describing a Set ' Lo

We have at our disposal two methods for describing a set:
(1) the tabulation method, in which we list or tabulate every

11
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element of a set, and (2) the rule method, in wiilch we describe
the elements of a set by some verbal or symbollc statement without
actually 1listing 1ts elements. This iatter method was used in the
precedlng paragraph when we defined a set by specifying that it
contained all the obJjects in your desk. Other illustrations of

" the rule method for defining a set are the following: the set of
all boys and girls who attend your school, the set of people who
live in your home, the set of books in your school library, or the
set of colors your sister is gbing to use in redecorating her
kitchen.

Although the rule method for defining a set wlll be usgsed.
predominantly, there are cases in which the only feasible way to
define a set 1s by actually tabulating its elements. This may be
because the elements of a set are not required to have anything in
common except membershlp in the set. It 1s true that most, if not
all, of the sets we shall be talking about will consist of things
which are naturally assembled together, as, for example, the set
of whole numbers. Nonetheless, a set may consist of things which
have no obvious relation except that they happen to be grouped to-
gether, Jjust as the set of obJjects which a nine-year old boy calls
his "treasure" may consist of a yo-yo, an indlan-head penny, a
ball made of packed tinfoll, a collection of match books, a dried
grasshopper, a pocket knife, and a pack of baseball cards. Per-
haps such an example will help to clarify the idea that a set is
a collectlon of things, not necessarily alike in any other respect,
and that membership in the set 1s to be emphasized.

Notation

The notation which 1s customarily used when defining a set,
whether by the tabulation method or the rule method, will be
i1llustrated by another example. Consider this question: what is
the set of all coins in your pocket at this moment? (The answer
"in this case might be the set with no elements -- the empty set!)
Suppose that you have three pennies, two nickels, a dime, &nd a
quarter in your pocket, the pennies and nickels beilng distinguished
by different dates. The set called for by the rule 1s the

12



collection of these seven coins and no others.’ Using the tabula=-
tion method, we symbolize this by writing:
s = {1915 penny, 1y37 penny, 1953 penny,
‘ 1942 nickel, 1950 nickel, dime, quarter].
Capital "S" is a name for the set, and the names of the elements
of the set are enclosed in the braces. The order in which the
elements are listed within the braces does not matter. Alterna-
tively, we may denote this same set by enclosing the rule in
braces:
S = {* : * 1is a coin in your pocket].

" DPhis is read, "S 1s the set of all * such that * 1is a coln in
your pocket." The colon following the first * 1is a symbol for
the phrase "such that," and the symbol * stands for any unspeci-
fied element of the set. We could Just as well have used ¢,
or X, or § , 80 that S = {c + ¢ 48 a coin in your pocket]) is
st1ll the set of coins in your pocket. The symbolism (* : * ces)
is often called the "set-builder" notation. Some texts use a
vertical line instead of the colon, as in {* | * ...]}; we prefer
the colon for typographical reasons.

In summary, we have illustrated two alternative ways for
defining any particular set: (1) the tabulation method, and
(2) the rule or set-builder method. As emphasized earlier, each
of these methods has the essential characteristic that every object
may be classified as either belonging to the set or not belonging
to the set. In some cases elther method can be used, as we did in
describing the set of coins in your pocket. In other situations
only one of the two methods may be practical. For example, can
you tabulate the elements of this set:

P=(%:% is a human being who knows that
5 4+ 2 = 4 but does not know that 5 + 5 = 10}?
Or, can you e the rule method to specify the following rather
unusual set without actually listing its elements:
Q = (this book, the moon, your left shoe}?

To indicate membership in a set we use the Greek letter €
(epsilon). Thus, if a is a member of the set A, we write
a € A. (This may be read, "a 1s an element of the set A," or

13




"a belongs to the set A," etc.) Likewise, we may wish to indicate
that b 1s not an element of A. 1In this case we use epsilon with
a diagonal line drawn through it, indicating negation, and write

bg A.

Exercises

.. Use both the tabulation method and the rule method to specify
the following sets:
a) the vowels;
b) the prime numbers less than 20;
c) the people who live in your house;
d) the odd multiples of three which are equal to or less
than 21;
e) the two-digit numbers, the sum of whose digits is 8.
2. Represent the following sets by the rule method and tell why
the tabulation method may be difficult or impossible:
a) the set of students in your school;
b) the integers greater than 7;
c) the people in your community who found a ten-dollar bill
© yesterday;
d) the books in your school library;
e) the rational numbers between 2 and 3.
3. TFind a rule which will define the sets whose elements are
tabulated 1in each of the following:
a) A= [2: u: 6: 8: 10]5

b) B = [‘3: -2, -1, 0, 1, 2, 3]3

c) C = [l: b, 9, 16: 25]3

d) Db = (2, 5, 8, 11, 14, 17});

e) E = {123, 132, 213, 23;, 312, 321).

Answers to Exercises on Sets

In all of the following answers, letters, symbols, and names
of people or objects as well as their sequence may be different
without making the answers incorrect. It is not necessary always
to name a set by means of a capital letter. '
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1. a) v=1_{a, e, 1, o, u} or V= (%3 ¥ is a vowel]
bp) p=1(2, 3, 5, 7, 11, 13, 17, 1Y}
= (p : p 1s a prime number less than 20}
For technical reasons, 1 is not considered a prime number.
For example, its inclusion would raise a difficulty in the
unique factorization theorem.
¢) R = ((insert names of people living in your house))
"= {a :+ a 1s a person who lives in my house)
a) T = (3, 9, 15, 21}
' =(n:n 1s an odd multiple of 3 and n ¢
e) N = (17, 26, 35, Wi, 53, 62, 71, 80}
= (x : x 1s a two-digit integer, the sum of whose,
digits is 8)
Note: O8 is not considered a two-digit number in our
system.
2, a) S = (s : s 1s a student in our school]

b) M= (# :# > 7)

c) P = (p : p is a person in our community who found a ten-
dollar bill yesterday)

d) B = (b : b 1is a book in our school library)

e) F =(f : f 1s a rational number between 2 ¢nd 3)

Here are three types of sets which are not tabulated.

(a) and (d) represent extensive and lengthy lists which are

available somewhere as completely tabulated sets but usually

not duplicated.

(b) and (e) represent examples of sets which contain an

endless number of elements and thus defy listing.

(¢) represents a condition frequently found in mathematics

where even though the description is clear and well-defined

it still requires a great deal of work or ingenuity to find

. the elements,
3. a) A= (a: a 1s a positive even integer less than 12)
or (a : a 1s an even natural number less than or equal

to 10)

b) B = (b : b is an integer whose square ‘s less than 10} or
{b : b 1is an integer and -3 < b £ 3}

15




c) C

]

(c : ¢ 1is the square of 1, 2, 3, 4, or 5} or
(c : ¢ 1s the cquare of an integer and 0 < ¢ < 26) or
[c2 : ¢ is an integer and 1 < ¢ < 5}
d) D={d:d =2+ 3n, n is an integer, and 0<ng5)or
(a : d is a number of the form 3n - 1, and n = 1, 2,
3, L, 50or 6} or {d : d 1s a term in an arithmetic
sequence whose first term 1is 2, whose common difference
is 3, and whose last term is 17)
e) E={e : e 1s a permutation of the digits 1. "~ .d 3)
or (abc : abec ! a permutation of .
or (e : e 1s a itnree-digit integer formed from the digits
1, 2, and 3 without repetition}. '

i-1. Functions. Pages 1-7.

A function can be defined in a variety of ways. The definition
we have glven was selected because 1t emphasizes the modern point of
view of a function as a mapping, a point of view which is a particu-
larly useful one in describing the composition of functions and
inverse functions. Another common contemporary practice is to
define a functlon as a set of ordered pairs ir which no two distinzt
palrs have thc same first component; this definition is a particu-
larly convenient one 1in dealing with graphs., These two definitions
can be shown to be loglcally equivalent, and :.zathematician would
certalnly feel free to think of a function in .ither wd&. We feel,
howevel, that 1t may be less confusing to the student 1f we stick
to one definition.

You should be very careful at this stage to 1nsist upon the
proper use of functional notatlion and how to read 1t. If we write

o fi@1 X—>y
then we read,

"The function f that takes (or maps) = into y."
If we write y = f(x), we read
"y 1s the value of f at .x '
e student should not be permitted to say tim— y = £(x) is a
inction. This s = common error of usage. ==y mathematiclans

[sec. 1-1]
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still use y = f(x) elliptically, but being mathematicians, they
understand what they are doing. High school students, however,
are apt to be very confused by this and we wish to do everything
we can to be clear about the matter. Thus, y = 3 - x 1s not a
"14inear function" although it may be used to define one over the
real numbers, l.e.
i f: x—>3 - X.

In explaining the function concept you will probably wish to
make use of a variety of technlques. The'representation as a
machine 1s one. Another approach might be to suggest a function
from a domain consisting of the students in the class to . range
consisting of the seats in the class and then ask for restrictions
on the assignment so that 1t rebresents a function.. For instance,
two different seats could not be assigned to the séﬁémspudentg at

least one seat would have to be assigned to each student, etec.
Or again, inquire into the possibility of defining a function from
the set of students to the set of their welghts. Such examples
are easy to devise and provide a means of focus.. atuzction on the
essential rroperties of a function. Also 1t is wuwful for the
student tc be aware of the fact that the domain znd tm:zie of a
funczion need not be numerical. Many times 1t i3 o=yl to consld-
er a function from the real numbers, say, to a set i roints 1n a
plane or vice versa (Chapter 5).

It is also helpful to use examples from the sciences. You
might ask the students what phislclsts mean wher they say that
the length of a metal bar is a function of the ’ampe:amxre'of the
bar, or that the pressure of a gas at a gilven tTe. gerature is a
function of the volume 1t occupies. Make sure 1r ez:h case that
the students arrive at a functlon from the real ..umhzrs to the
real numbers.

When introducing the idea of a function as . @mag. -ng, you
should emphasize the point that there cannot be ~»2rr than one
arrow from each element of the domain while theze cin Je any number
of arrows to each element of the range. ~If there it Jjust one arrow
to each element in the range, then the function is s:-.: to be one-
to-one and, as willl be seen later, has an inverse.

[sec. 1-1]
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The concepts of domain and range should be emphasized. It
should be made clear that in order to define a function, we must
have a domain. (It will prove valuable to the students if from
time to time after you have completed the unit you stop and ask

for the domain and range of whatever function you may be consilder-
ing at the time.)

Answers to Exercises 1-1. Pages 7-8.

1. e, because it 1s multiple valued

2. a) | c) | a)

5
4, 4 41 - 4
3./.3 34 +3
2 —el2 2.\ T2
11 4 s
; 1o o —.
-1 4-1
-24 -2
~34 L -3
[
3. Domain Range
a. R R
b. R nonnegative R
¢. nonnegative R nonnegative R
d. R except x =1 R except f(x) =1
e. R except x =2 or -2 R except - % < £(x) < o.

To find the range in (d), set y = §"§—I and solve for x:

x = 5L. This shows thai8y # 1.

[sec, 1-1]




Do not discuss (e) at length. Simply show graph to look
like this:

| B

20 0-3) 20

If you test to find values of x such that --% < £{x) < 0,
you will obtain imaginary values for X. ‘

a) f£(0) =1 e) £(100) = 201
b) f£(-1) = -1 a) £(3) =t
a) f£(o) =3 c) f(a) = a® - 2a + 3
b) f£(-1) =6 d) P(x - 1) = x° - bx + 6
a) f£(t) =o0 d) f£(a) = /2% - 16
b) f£(-5) =3 e) {a -1) = a”® - 2a - 15
c) f£(5) =3 £y t(m) =./7° - 16
19
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7. D = [l: 2, 3, “] R = [?-: LL, 6: 8]
Thy T1o
94 9
8+ 8
1+ - 7
(-2 3 L 6
84 -]
4 4
3./ 5
21 - 2
|-/-I
o T 0

8. They are not the =same function, since g does not include O
in its domain. n
9. a) M, -4 b) 8 c) 12, -12

1-2. Graph of a Function. Pages 8-12.

The graph is'perhaps the clearest means of displayling a func-
tion since the story is all there at once. The student can observe
the behavior of f for the various portions of the domain, and, in
‘most cases, irregularities are obvious immediately. The difficulty
is, of course, that some functlons cannot be graphed, as, for .

example,
1 1if x rational,
f:x—a[ :

0 1if x dirrational.
Since high school students are not normally exposed to such func-
tions, however, this 1s noi& a very serious obstacle.
The graph might best be introduced by using some function
whose behavior is not too zbvious. You may, fcr example, wish to

20
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use the "greatest integer contained in" function, which 1s easily
explained and leads to some interesting cohfigurations. We defilne
; f @ x—>[x]

as the function which maps x into the greatest integer contailned

in x. Thus

’]\
Loe =1, 13) =0, £(-3) = -2, ete,

The graph of the equation y = [x] is in Figure TC, 1-2a. There
‘are a number of interesting combinations which can be\formed with

[x}].
Figures TC, 1-2b to TC, 1-2d illustrate three of them,

A Yy - Y
Ommvermes 3t
e . 2t
R, Ll
o—o -1}
[ -2F
fi x>[x -3 fix—ex- [x]
Fig. TC, 1l-2a Filg. TC, 1-2b
VY {y
4
3 — 3 -
2 [ . 2 —
L N . x " 1 'l A 1 e
-3 -2 - i 2 3 "
ﬂ- L] -2_
-2} -3
-SF -4[.
. [x] £
frx—>(-1) S ]
Fig. 'I‘C" 1-20 2i Figo Tc’ l«ﬁd

[sec. 1-2]
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Furthermore, an infinite checkerboard pattern v by
{(x, y) ¢ [x] is even and [y] 3u ev.n;.

You may also find 1t helpful to sketch on the blackboard some
figures similar to those in Figure 1-2g and to have the students
d=termine whether or not th:y represent functions by applying the
vertical line test. Exercise 2 on page 13 1s also a useful type
of blackboard exercise and you wili probably find it helpful to
do one as an illustration before the students attempt to do
Exercise 2 themselves,

You may want to point out that most of the graphs in the text
are incomplete.

Answers to Exercises 1-2. Pages 13-1%4.

1. a and b

a) b) c)

X

22
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b,
a) b) c)
' — ]
__d.{yW - ) | BSSEE S y RS R g —f
R =i i 2 — A < - Y S .
A i Ul R N ]
- 3@ ] - 2 . K- -
T X | T 1 x 2
e J OoM _"9_; .} lA'OA1 N . - _:.p}w ; _
R O O O N _ {— -
‘ N __|._,{I JS B _l_ b !
e} e T l ;

1-3. Constant Functions and Linear Functions. Pages 14-19.

Although the ideas of this section should be famlliar to the
student, it is unlikely that he will have encountered them in the
language of mapping. This secticn will, therefore, give a review
of important material and at the same time valuable practice in
the use of functional notation.

Answers to Exercises 1-3. Pages 19-21.

1. (a) Slope =3 (¢) Slope = -%—
(b) Slope = -2 (@) Slope = %
2., (a) £ : x—>-2x+ 6 (¢) f(x) = -2x + 7
(b). £ i1 x—>-2x - 7 (d) f(x) = -2x + 13
3. (a) Slope = :—13--:—% = -7 (¢c) Slope = L%—%—E =2
(b) Slope = =3 - ,g =6 (d) Slope = ;%_'H}_E = =D
B, (a) f(x) =23x -2 2-3(0)r Not a function.
= -2x - 10 (d) £ i x—>0h

(b) f£(x)
- [sec.. 1-3]
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5. (a) f: x—>-3x+ 7T (¢) f£(x) = -3x + 8
(b) f: Xx—>-3x - 3 (d) f(x) = ~3x - 13
6. "(a) £(3) =5 (¢) £(3) =1
(b) £(3) = -

7. Yes. The slope of the line through P and Q 1is -2 and the
slope of the line through P and S is -2. Two lines through
| the same point having the same slope coilncide.

8. (a) (100.1 - 100) ({32=225) + 25 = .1(14) + 25 = 26.1

f£(100. 1) 26.u

(o) .3(1b) - = h,2 + 25 =29.2. f£(100.3) = 29.2
- (e) f(lOl 7) u8 8
(¢) £(99.7) = 20.8
9. (a) f(53.3) = -uk(,3) + 25 = 11.8
(b) £(53.8) = -10.2
(c¢) f£(58.4) = -36.6
(d) f£(52.6) = 42,6
10. X+ Ty +1=0 ‘x -3y +Ut =0
X -2y +8=0 Slope = %
X + Ty +1=0 oy = %x + D
2x - by + 16 = O R-2- 40
J11y = 15 103 _
=3 <0
X = - _T 1ix - 33y + 103 =

11. The slopes of the 1ines AB and CD are E and the slopes of the
lines AD and BC are - 5 Since the opposite sides are paral-
lel (have the same slope), ABCD 1s a parallelogram.

12. (a) c(4, 8) (b) c(5, -11)

13, f ¢ XxX—>»2x - 1
f(t +1) =2(t +1) -1 =2t +1

.P(t + 1, 2t + 1) 1s on the graph of f.

24
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14, £(0) = f(t - 1) when t = 1. Then £(0) =3+« 1 +1 =21
£(8) = £(t - 1) when t = 9. Then £(8) =3 « 9 + 1 = 28
15. £(0) = £(t - 1) when t = 1. Then £(0) = 1% + 1 =2
£(8) = £(t - 1) when t = 9. Then £(8) = 9° + 1 = 82
16. f(xl) = mx; + b, f(xg) = mx, + D
f(xl) - f(xg) =mx; +b - (mx, + b)
= mX) - MX5

m(x1 - X5)
Since m < O and X, < X, Or X; = X, < 0,
'm(xl - xg) >0

S £(xy) - £(xp) > 0 or £(x1) > £(xy)

1-4, The Absolute-value Function. Pages 21-23.

There are many reasons for studying this function. It is

simple but interestiné and useful, and most high school students ' -

are unfamiliar with it. It is an important tool in many proof's,
used not only in the later parts of this book but extensively in
more advanced mathematics.

The definition |x| = N/;E is an example of the composition
of functions, considered at greater length in the next section; in
this case, if f: Xx——>X° and g: X—>+X, then the absolute-
value function is the compound function gf. You may want to men-
tion this, informally, in anticipation of Section 1-5.

You may have to spend a little time on the definition of the
square-root symbol, ./ . The definition is, of course, to a con-
siderable extent arbitrary, but it must be unambiguous if 1t 1is
to be useful. It would be a great inconvenience if /3, for ex-
ample, represented a number which might be elther positive or
negative, and, to avoid this inconvenience, we agree that it is
positive. We can then represent the negative number whose square
is 3, without ambiguity, as -./3. Because, for_example,

67 = 6, students find it tempting to write \/GZS = X. This is,
of course, false if x < O. The only correct statement that can

[sec..l-u]
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be made here is, in fact, the second definitlon of absolute value;
Exercise 1 is designed to reinforce this.

It is convenient, in many applications, to think of |x| as the
(undirected) distance on the number line between the origin and the
point x. Similarly, |x - a] (or |a - x|) is the distance between
‘the point x and the point a. This concept is particularly con-
venient in problems like Exercises 3 and 4; thus for example, the
values of x which satisfy |x - 5] < 2 are those values which are
less than 2 units from 5, namely all those fr.m 3 to 7. Inequalil-
ties such as these appear falrly often in the calculus.

Exercises 1 - 8 are intended to give the pupil an under-
standing of the meaning of absolute value and some facility in
manipulating it. Exercises 9 - 1l are .in anticipation of some of
the work of Chapter 3.

Answers to Exercises 1-4, Pages 23-24,

1. a) x> O. b) x < 0. These follow directly from the
definition of the square-root symtol, ./~ .
2. a) x-1>0 or x>1. b) x-1<0 or x<1.
c) AZ d)

+3
42 M /
\l \ ‘|/
\./ 1 + +> X [ 5> X
o 1+ 23 2 TN\ 2

3. a)- The points on the number line 1! units from O zre 1! and
~-1%, A more formal (and longer) way to arrive at the
same result is to note that either x > O, 1n which case
|x[ = x and the given equation then reads x = 1lb, or

26
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d)

e)
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X < 0, in which case |x| = -x and the equation reads
-x = 1t or x = -1%, Still another approach:

x| =/ = 18

x° = 196

x = T 10 (and both check).

Xx =5 or -9, All three methods discussed under (a) apply
here, with x + 2 replacing x.
Since the absolute value of a number is never negative, it
should be clear by inspection that the eguation has no
roots.
The problem asks for those points on the number line which
are within 1 unit of 2. These are the numbers from 1 to 3,
and the solution is therefore {x : 1 < x < 3}. It is a
common practice merely to give the double inequality which
defines this set, and state the solution as 1 < x < 3.
Here we must find those points which are more than 2 units
from 5; hence {x : x<3 or x> 7).
{x : -4.2 < x < -3.8}, as in (a). Note that |x + 4| =
fx -~ (-4)] 1is the distance between x and -lL.
By Theorem 1-1, |2x - 3] = 2|x - 1.5|; hence the given
inequality becomes

2|lx - 1.5| < 0.0t

|x - 1.5 < 0.02.

and the solution, as in (a), 1s {x : 1.8 < x < 1 .52}.
fx : -1.28 < x € -1.22}, as in (4).

If x > 0, then |x| = x and x - |x| = x%; if x < O, then
x -+ |x] = x(-x) = -x2 < 0 < x°.
In Theorem 1-2, replace b by -b; since |-b| = |b|, the
desired result follows immediately.
If a > b, then |a - b| = & - b and the given expression becomes
Ha +b+a-b)=a
If a < b, then |a - b| = -a + b and the given expression
becomes N
%(a +b-a+b)=h.

[sec. 1-#]27
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The lesser of a2 and b 1s gilven by %(a + Db - la - bl).
Trial 1s as good a way as any to get this.

8. If x <O, then |x| = -x, |x - 2] = -x +2, and y = -2x + 2,
If 0 < x <2, then |x} = x, |x - 2l = =x + 2, and y = 2.
If x > 2, then |x| =x, {x - 2] =x -2, and y = 2x - 2.
Hence we get

A1
AN

RNy DU SRV V) W A e

L.

v
b

= RO N 0 £ 0 1 I U 8

9. |x2 + x| £ |x2| + |2x| by Theorem 1-2
< |x2| + 2}x| by Theorem 1-1
< |x| + 2|x| = 3|x] by the inequality given in the
Exercise.

10. Multiplying both sides of x < k by the positive number X
glves x2 < kx. Then, proceeding as in Exercise Y, we get
1x2 - 3x| < |x°] + |-3x| = |x?] + 3|x| < 0.1{x| + 3|x] = 3.1|x]
if |x| < 0.1.

11. |x} < 0.001, or -0.001 < x < 0.001. This result can be
established as in Exercise 10,

Answers to Exercises 1-5. Pages 28-29.

1. a) -1 . b) +1 . . c) 5
' d) 63 e) x° + bx + 3 f) X% + 1
g) x+5
28
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2. a) acx 4+ ad + b b) aecx + c¢b + d
d) Theorem: The slope of either composite of two linear
functions is equal to the product of the slopes of the
two linear functions.
3. a) 1, -3, 8
b) If £ : x~—-—->31c-, then ff : x—>x for all x # O.
L, a) fJ: x—>x + 2 Jf t X—>x + 2
X—>X ~ 2

! X —>X ~ 2

g
h
5. a) (fg)(x) = x° and (gf)(x) = x
b) (fg)(x) = (gf)(x) = x™
6. a) (f - g)(x) = x°
b) (f - g)(x) =x"*"N
7. a) (f +g)(x) =x -x -6
b) ((£ - gh) (x) =x' -x%-6
¢) (fh)(x) = x° + 2
a) (gh)(x) = x® - 3

e) ((fh) * (gh)) (x) = x* - x% - 6

8. The result is true and can be proved as follows: Given 3
functions, f : x—>f(x), g : x——>g(x), and h : x—>h(x),
we'wish to show that

(f - g)h = (fh) - (gh).
(It 1s assumed throughout that f, g, and h are being dis-
cussed for all x 1in the intersection of their domains.)
By definition: (f:g)(x) = f(x)-g(x),
hence | ((f-g)h)(x) = (£-g)(h(x))

£(n(x))-g(n(x))
((£n)- (en)) (x)

9. The theorem i1s false, as the following counterexample shows:
Take for both g and h the identity function x——sx and
for - f the function x—>x + 1. Then (g - h)(x) = x° and
(£(g - h)) (x) = x> + 1, but (£g)(x) = (fh)(x) = x + 1, and
therefore ((fg) + (fh)) (x) = (x + 1)% £ x° + 1. '

10. (f + g)h = fh + gh, since (f + g)(x) = £(x) + g(x), and if
x 1s replaced by h(x), we obtain (f + g)(h(x)) = £(h(x)) +
g(h(x)). But f(g + h) # fg + fh; this can be shown using as
counterexample the functions suggested under Exercise 9.

[sec. 1-5]
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11. Take f£(x) . < + bg, g(x).= m,X + b,, o) = maX + bg.

by
Then (gh)(-)  g(w(x)) = my(mgx + bg) — b = myMax + Myby + by
£((

2 Fati o
and (figh, =~} = gh) (x)) = ml(mgmjl + miglig b2) 4 5.
| = mlmEmBX -wxiﬁijB + mlb2 +'91.
Similaxly (fg) x) = T (X)) = ml(mgx Yge ok by
= mymso- o + b1
and ((fg)t (fg)(h(x)) = mlmg(me + hj) + miby + by

m1m2m3x ”rm:ﬂ2b3 +-m1b2 + bl

(£(gh)) (x)

Since this result is valid for all x € R, it follows that
(fg)h = £(gh).

1-6. Inversion. Pages 30-33.

It is frequently helpful in conveying the ldea of an inverse
to consider functions with a finite domain. Thus, let f : X~—> Yy
be described by the table ' o '

x | | 3] & Domain of £ = (1, 3, 4}

1
y | 2 I 5 I 2 Range of f = (2, 5, 3]

which we may represent on a graph as dots.

N ol p O

1

o I 2 3 4 5
30
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g1 und=es what f does, Thus, if f sencs 11~ =, £7" :nds 2
right -zck to 1. Hence, the domain of f-l is the =~ of ., ‘
{= 5, 3], and the range of 71 1s the domain c¢° i Wez .y
‘wri=e the table for £ % as

x | @ 5 I 3

¥ 1 3 |
picﬁure? -n the above graph as circles. Note the s— = =" ai f

and f - with respect to the graph of y = x.

When the expression on the right side of the an iy siimple,
f ma; be easily obtained from f. Thus, if f: x— [RESE
then £™%: x —> 5_5_2. f corresponds to the instrw ..oy
"multiply by 3 and then subtract 2." To "undo" this .
£™1 we add 2 and then divide by 3. This is all well and r=od

for simple functions, However, this approach no long =— :..:rks if
X + 1
X + 2°

-1

f: x—>

If we write f : X——> y where y = %—{F%, when we sesi f

we want to find the value of x that 1s associated with 3 par-

X + 1 2y - 1

‘ticular y. Hence, we solve y = for x, obtalmin; x =

x + -y + 1°
MWe then usually write L x———a-%%—i—% using "x" in zlazz of "y".

We could check thils result quilckly by taking a snecific value
for x, say x = 0, and seeing whether T undoes what f docas.
0 + 1 1 1 -1 . s
Thus, f: 0—s>5—5 =5 or f(0) = 5. f should sez = back to

0. Let us see if it does.

1
2(z) -1
£ %- > f =1 i 1 - 0 and 1t does. In gener.
| -(5) +1 )
we have (£73f)(x) = £71(f(x)) = r~H (&=

oX + 1 1
Xtz _2(x +1) - (x +2)
Toox o H 1 1 T -x + 1)+ (x+ 2)
X 2
X +2 -x-2_X
. T -x -1+ x + 2 1
‘ = X.
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x 1/
2x - 1 Y
or g_'o_[\ 1)(\,) =X + 2x - 1 + (—X —+ 1)
- 2x - 1 LD X - 1L + 2(-x + 1)
-X -

H®
I
»

In gz-eral, if f: x—>y = f(x), then solve the equatlon
y= f{x) for x 1in terms of y. This enables us to assoclate
wi=h a giv=n y 1ts x-partner and thus reveals the inverse, f_l.
Of zours=z, if f does not have an lInverse, the expression obtailned

for x == terms of y will reveal this.

imswers ic Exercises 1-6. Page 33.

1. a) x—->x + 7
b) x<———>3iﬁ%£2
e) x———>%

2. a) x =y + 7 compared with x——>x + 7
b) x = ;’__%__2 compared with x——> 5—-5——2
) x =2 1

= compared with x— =
y X

3. Let the number be x} then the various instructions given can
be represented by the functions fl to f7, as follows:

fl 1 X —>»5x
£, X —>X 6
£, : x —>hx

x
f7 X —>T60
Then
X _5(h(5x + 6) +9) - 165 _
f7f6f5fuf3f2fl P X > 160 = X.

32
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Answers to Miscellaneous Exercises of cheoter 1. Pages 35-37.

1. a)
2. a) Function d) Notr = funczion
b) Fun:tion e) Not - fuz:ttion

¢) Function with inverse f) Function.

3. f: X—=> 2 or y-= 2.
4, When a = b =0 and ¢ € R. B
5. The point of intersection is (%, - =), g0 f : X—> -%.

-1 o
6. The point of intersection is (2 _% s a;, = %o), provided

a #5. If a =5, they will be parallel, or if also b = I,
they will colncide.

7. fl: X—>»x + 3 and fgz X—> -x -3,

8., 10x +y -7=0 or y=7=-10x and m = -10. This means
for each unilt% increase in x, ¥ decreases by 10. If x
increases from 500 to 505, y decre,ses 50. If y decreases
from -500 to -505, “x increases .5 or §

- 3 -1 - o
. Slope ¢ dine -—-—-(-IT -3- and lin= 1s = -5x.

10. Point of intersection is (0, k), so line is y = gx + X.

11, 6x + 3y -7 = 0=y = %-23{
Yy = -2X + 3mm>y =3 - 2X

Lines are parallel and -:23- of a unit apart on the y-axis, Half
of this distance 1is % so the line is y = %- - 2X.

- + 3 31
12, 2y =X + 3=y = + = Slope = 3.

Slope of | 1s -2. So line is y = -2x + 18.

13. y =f,(t)"'=t - 10 when t 1is in mirates.
y = £5(t) = 60(t - £) when t 1s in hours. Domein =% % for
£, 1s {t:t > 10 and t .1s a natural aumber.); for L. 1t s

I\,|><

{6:t > 5% and n > 10 and n 1s a natural number.]

14, (a) AC: y

]

j'_lg—x (¢c) Intersection 1s point
- (6, 33)

G
5

<

1

33
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17.
18.

19.

(a) AC: y = ;2- X Intsrsection 1is point
e . -
(o) BED: = Iz {-:' ’ %&)
Py = Xy = SEq
(£(sh)) (x) = £(g(t x))) = £ gle)) = £z = a,
(f(zg))(x) = £(h(g x))) = (b)) =2"2; = 2.

But gh: X——>b 2a:d hg: x—>c¢, .= =izx=se two are diffssent
unless b = ¢,

-1, X -Db
f . x~—>_]-n-—'

Any constant funciZon x——c¢c, or The identity function
X—> X, or the absolute-value functior x—> |x].

a)

2
e

L. L 1 ()

[ ] 1 [ 1
473 "2 ‘|4jj | 2 3 4 5

- X

_i
2
3

b) Note that neither absolute =Tue can exce=d 1l; k=me x
is limited to {x : -1 < x <ZF and y is similsy—
restricted.

b

£

'A“{

"3 2 —N\9 /1 2 3
\4

.-'a

\ 4
3t

. 34
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c)
y
15
[ 3
T2
1!
] 1 | R I [E U TN W B B '3
5 473" ’I_l_\ 2 345
-
-3}
20 (fg)(x) = 2(3x + k) - 5 =6x +2k -5
(gf)(x) = 3(2x - 5) + k = 6x - 15 + k
6x + 2k - 5 =6x - 15 + k
k = =10
21 Domain Tange
£ R {y : vy 20}
g {x : |x| <8} (y: 0<ygl)

The intersecticn of the range of f znd the domair I g 1=
{y : 0<y<b). The elements of this set are uhe i—mg=s.
under the mapping £, of {x : lx| < &}, wzich Iz therefors

che domain of gf.
Toe “ntersection of the range of g and tre domrain of f
is the range of g 1tself; hence the domzin c? fg 1s the

domain of g, that is, {x : |x| < ¥].
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Illustrative Test (uestions for Chapter 1

The following questions (wlth answers appended) have been
included in ard=r to assist ;ou in the preparation of tests and
quizzes. The order of the items i1s approximately the sams as the
order in which the various concepts belng tested appear in the
text. This means that you can use selected problems from this
list before the chapter has been completed.

For a short quiz, one or two problems from this 1is® would
be sufficient; a full periocd (40 to 50 minutes) test miztt con-
tain anywhere frbm five to ten of the problems. It wouic "me a
mistake to give all the questions as a chapter test uni=z=z at
least two class periods were planned for 1t.

l. Given f: x—> x2 + 2, find

a) £(3) b) £(6) c) £(3)

. Find the domain of f if it 1s the largest set of real num-
bers that f maps into real numbers, and find also s cor-

N’

responding range:

a) f: x—>vx - 1.

X + 2

X+ 1

3. Which of these could be the graph of
a) a function f: x—>y,

b) f: x—>

b) a function f: y —> x°

(1 y (2 ©

y
//\x // P [

-

4 7 =

(4)

/
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4L, Given the function f: x——>»f(x) y
sketched at the right, sketch
-the graphs of the following

functions:
-a) g x—>-f(x)
b) h: x —>-f(-x) . ~ X
c) k: x—>£(]x]) -2 -1 ° 1 2
a) -m: x—>s|£(x)]
5. Graph the following functions, —]

indicating the domain and range i

on the appropriate axes:

a) f: x—>1 + J%x, x> 1

b) g x—>1+ |x - 1], -1 <x< 2.
6. Graph: |x| + 2ly] = b.
7. Solve: a) |x + 3] <o0.2

b) |2x - 5] < o0.1.

8. TFind a linear function £ suck that f(2) = 3 and £(3) =

2 ().
9, If a linear function f has sliope % and if f(2) = -3,
find £(7).

10. What is the slope of a linear function f if f£(5) - £(2) = U2

11. Find the linear function whose graph passes through all points
with coordinates of the form (gt + 3)(t - 2), (t+ W)(t - 3» .

12. Find the value of k for which (k, 2k) lies on the line
through (3, -2) and (5, 4).

13, Given f: x—>»3x +1 and g: x —> x° - 2, find the func-
tion fg - gf. . '

14, Given f: x—>2x + 1 and g: X—> x° - 1, solve the
equation (gf)(x) = O.

15. Given f: x—>»3x +'5 and g: x—»2x + k, find k 1if
(gf)(x) = (£g)(x) for all x € R.

Answers to Illustrative Test Questions.

1. a) 11 b) 38 c) %; .
2. a) Domain: (x : x > 1}. Range: (y : y > O}.
b) Domain: (x : x # -1]. Range: (y : y # 1}.
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3. a)
b)
b,
a)
c)
5.
a)

| 23

b)

£

T -
N

d)

s

-

S Y




(" 4,0) A 1

a) -3.2<x< - 2.8

b) 2.45 < x < 2.55

X —>-X + 5

£(7) =3 -
I -

m=-3-

x—>x - 6

©,-2)

29
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12.

13.
C1b,

15,

49



Chapter 2
POLYNOMIAL FUNCTIONS

Introduction.

This 1s the first of two chapters on polynomial functlons.

It covers material on the solution of polynomial equations usually
included in a course 1n advanced aigebra, although 1t differs from
conventional treatments in certain respects. (1) It uses some-
what more precise terminology than is customary. For example, we
distinguish between "polynomial" and "polynomial function".

(2) The treatment of synthetic division, or as we prefer to call
1t, synthetic substitution, 1s an application of the dlstributive
property of the real numbers and leads directly to the Remainder
Theorem without the use of long division. (3) For the approx-
imation of irrational roots we use the ILocation Theorem and linear
interpolation rather than Horner's method. In Chapter 3 we 1ntro-
duce Newton's method as a more powerful means of approximating
irrational roots.

Some historical information has been included in the text with
detailed references to generally accessible books. Thls subject
offers an unusual opportunity to give the student an interesting
and understandable introduction to portions of the hlstory of
mathematics.

The Appendix contains a sectlon on the importance of poly-
nomials and includes a treatment of the Lagrange interpolation
formula. This work is sultable for a longer course or for superior
students, |

2-1, Introductlion and Notation. Pages 39-43.

This section contains definitions of "zero of a function"
and "polynomial function" in terms of the concepts developed ln
Chapter 1, and i1t also includes an overview of the history of the
problem of ¢éetermining the zeros of a given polynomial functilou.

It is important to emphasize again the dlstinction made in
Chapter 1 between a functlon and the means of defining a functilon.
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Thus; a polynomial expression

n-1
_1X e+ oarX + ag

£(x) = anxn +a

defines a polynomial function
f: x—>f(x).

From this point of view it is incorrect to speak of f(x) as a
function. On the other hand, we do occasionally use the word
"polynomial" for the sake of verbal simplicity when it is clear
from the context that we mean "polynomial function". The dis-
tinction is likely to be more troublesome for teachers accustomed

to conventional treatments of algebfa than to their students.

2-2. Evaluation of f(x) at x = c¢c. Pages 43-U7.

So-called "synthetic division" is presented as an application
of the distributive principle that 1s efficient and easily Justi-
fied. The process here developed is used in computing with mach-

ines since the only operations reguired are successive multiplica-
tions and additions rather than raising to powers.

Answers to Exercises 2-2., Pages 47-48.

1, 1 0 0 1 -3 2. -3 1 1 -2
1 -2 4 -7 [11 ]2 -3 4 -3 1] -1
1 1 1 2 (-11]1 -3 10 -29| 85| -3
1 3 9 28 |81 | 3 -3 1 1| -2 0

3. 3 -2 0 1 4, 6 -5 -17 6
11 1 21 |3
3 -3 -7 % 3 N
1} 8 |2 1
3 -1 -3 5|3 6 -2 -18 -3 5
3 4 8la7 |2 & -8 -13 —255“%
1
6 -3 -18 0 §
6 7 -3 o |2
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6 -29 37 -12

6 -29 37 |-12|0
6 -23 14 211
6 -17 3| -6(2
6 -11 4 0|3
6 -5 17 | 56 |4

6. k = 3. Use direct or synthetic substitution.

7. 5. ThisEggéféise illustrates a case in which synthetic sub-
stitution 1s easier.

8. 1002. This exercise illustrates a case in which direct sub-
stitution is easier.

2-3, Graphs of Polynomial Functions. Pages 48-53,

The purpose of this section is to gilve students a first in-
.troduction to the graphs of polynomial functions of degree greater
than 2, and, incidentally, to reinforce the techniqﬁe of synthetic
substitution. Plotting a large number of points is not a very '
efficient way to obtain the graph of a polynomial function, but we
believe that it is a helpful first step leading ultimately to pro-
ficiency in sketching graphs by means of intercepts, maximum and
minimum points, and points of inflection, to be developed in
Chapter 3. '

The continuity of polynomial functions is assumed, but we
feel that teachers should recognize the importance of this concept
and be able to satisfy students on an intultive level that the
graph of a polynomial function contains no holes or breaks. The
simple but tedious expedient of evaluating f(x) for any sug-
gested real number x = ¢, and also for values of x near ¢,
should convince students of the reasonableness of the assumption.

[sec. 2-3]
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Answers to Exercises 2-3. Pages 53-54.

1. 3.
t fx) A £(x)
..Io 1 |0
- 5 h 5
t -+ —+>X —t 4 t ———>X
o/l 2 0 | 2
T
£ x‘-——->—2x3 + 3x2 + 12x - 13 £ x-—->2x3 - 3x2 - 12x
This 1s the graph of Figure 2-3b This is the graph of Figure 2-3b
inverted. It intersects the moved down 13 units.

x-axis at the same points.

2, flx) 4,
15
-+ > X
5
T '>x
o | 2 3
T
f: x——->2x3—12x+13 44 L x—-—>x3

[sec. 2-3]




f(x)

f: Jc—~»x3 + 4 f: x—x

This is the graph of Exercise 4
moved up 4 units.

6. 1 £(x) 8. f(x)

—
-

3

f: x——>x3 - 3x2 + 4 45 f: x-——»-xu - 2x° - 5x2 + 6x
R (

[sec. 2-3]




36

2-4, Remainder and Factor Theorems. Pages 54-57.

In this section the Remainder and Factor Theorems are devel-
oped as an'outgrowth of the process of synthetic substitution.
The Factor Theorem 1s applied as a testing device,

In conventional treatments of the Remainder Theorem, the
conclusion 1s a direct consequence of the division algorithm;
namely, of the fact that

Dividend = (Divisor) - (Quotient) + Remainder.
In these same treatments, the technique which we call "synthetic.
substitution" 1is introduced as an abbreviated method for the long
division of a polynomial by x - c. Thus,.the relationships among
long division, synthetic division, and the Remainder Theorem are
established.

Long division of polynomials, however, may be an unfamiliar
process. It is, nevertheless, important to be able to obtain the
quotient as well as the remainder for such a division. Synthetic
substitution, as an application of the distributive property, en—'
ables us to do this without recourse to long Zivision., If students
need.additional evidence of this fact, you should encourage them
to check the results of synthetic substitution of ¢ by actually
multiplying x - ¢ by the quotient and tk=n adding the remainder
f(c) to obtain the original polynomial. We illustrate by an
example. |

Example., Find the quotient and remainder when

2x3 - 6x° - x + 7 1is divided by x - 2,
and check your results by multiplication.

Solutioh. To divide the given polynomial by x - 2, we use
synthetic substitution of 2:

2 -6 -1 T |2

¥ -4 210

2 -2 -5 -3

The quotient is 2x2 - 2x - 5 and the remainder is -3. Therefore,

2x3-6x2-x+7=(x-2) (2x2-2x-5)-3,

46
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To check, we perform the indicated multiplication:
(x - 2) (2x2-— 2x - 5) = 2x3 - 6x° - x + 10.

Adding the remainder -3 gilves the original polynomial.

Answers to Exercises 2-4. Pages 57-58.

a) 3x° + 10x + 10 5
b) x° + 2 | 6
¢) -2x° - 3x° - 9x - 21 .73
a) 2x° - 2x + 4 0
2. Quotient Remainder
a) x> + 6x + 5 7
b) X2 + x - 2 0
c) x° + 2x - 1 ~1

3. q(x) 1is of degree n - m.
r(x) is of degree less than m.

4, Exercise 4 in Section 2-2 has x - 2 as a factor and x - %
or 3x - 1 as a factor.
Exercise 5 has x - 3 as a factor.

5. 1 4+ 1 -6
1 7 22 |60} 3
1 6 13 |20} 2 3 o
f(x) =x° + x"+x -6

1 5 6 0] 1 = (x -1) (x+ 2} (x + 3)
1 y 2 -6} 0

1 3 -2 |-4]-1

1 2 -3 0|]-2

1 1 -2 o]l-3

47
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2 1 -5 2

2 3 1[0 -2

2 1 -n|e6 |- £(x) = 2x° + x2 - 5x + 2

2 1 5|21 o =2(x+2) (x-1) (x - 2)
2 3 =-21}0 1 = (x +2) (x -1) (2x - 1)
2 5 5he | 2

2 2 -4lo |2

7. £(3) =18 -k =9, so k= 9.

8. If f£(x) 1s exactly divisible by =x - 3, then f£(3) =
But by substitution (direct or sgmthetic), f£(3) - 3k + 6.
Hence, 3k + 6 = 0 and k = -2. _

9. f(-1) = -2a - 14 = 0, so a = -7. Then f(1) = -8.

10. a) (2x - 3) (x + 5) ;
(x-280) (x -1=¥8) =L (2x - 1 -B) (2x - 1 +3)

¢) (x+ 21) (x - 21)

a) (x -3 - 21) (x - 3 + 21)

e) x(x"+/B) (x -./5)

f) This answer is given in the text.

g) 9(x - Bl (x - B

n) 2(x - 5L%§2£:) (x - 2 ‘“f-) (2x -2 -J/2) (2x - 2 +/2)

It should be pointed out here that the factorization of poly-
nomlals into linear factors with real or imaginary coefficients
is not unique. For example, the answer to part (a) given abowe
is a particularly simple form (usually desirable), but other
ways of factoring the given polynomial might include

2(x - %) (x + 5), +2(x - %) (V2x + 542), or even

%(2 +1) (x+5) [(4 - 21)x + (-6 + 31)] !

b)

= (3x + 1 -21) (3x + 1 + 21)

[sec.4?84]
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2-5. ILocating Zeros of Polynomial Functions. Pages 58-65.

The statement of the Location Theorem 1s made plausible on the
‘basis of a graphicalﬂ1nterpretation. Since no formal study of con-
tinuity has been included, an intuitive appeal is’ the only Jjusti-
fication for theé assumption that the polynomilal function 1s con-
tinuous in any closed interval.

Use of the Location Theorem does not guarantee that we can
find any of the real zeros of a polynomial function, but it does
provide helpful clues. in the search. The determination of upper
and lower bounds for the zeros further limlts the interval in
which any real zeros are to be found.

Answers to Exercises 2-5. FPage 66.

1. a) -1<¢<x<0; 1<x<2; and 2<xX< 3
b) 0<x<1 '
c) 1<¢<x<?2
d) -2 ¢ x < -1; and two zeros such that 0 < x< 1
e) -1 <x<0; 1<x<2 and 2<xX< 3
f) 2<¢<x<3
g) -2<x<-13; 0<x<1l; 1<x<2 and 5<x< 6
2. f(x) = x> - 2x° + 3x - k - '
a) r(0) = -k and f(1) =2 -k
For -k and 2 - k to be different in sign, we must have
0 < k < 2, since, 1f k < O, both -k >0 and 2 - k > 0.
If k >2, both -k <0 and 2 - k <O.
Another way to see this 1is to graph Yy, = -k and
¥, = 2 - k. A value of k for which Yo and y, are -

poth positive or both negative must be rejected. But
when one ¥ is above the k-axils and the other 1s below,
we have a possible k-value. (See figure on next page.)

49
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b) £(1) =2 -k and f(2) = 6 - k.
Hence, 2 < k < 6.

2-6. Rational Zeros. Pages 66-71.

The student should be encouraged to make intelligent guesses
for the zeros of a function. At this time he should use al of
the resources at his command.

The relationships between the roots and the coefficients of
polynomial equations, a topic commonly included in advanced algebra, -
are here introduced briefly for cubic equations in Exercises 14 to
18, rather than in the text. If time is short, these exercises
may be omitted without loss of continuity. On the other hand,
these relationshiés are sultable for further investigation by in-
terested students, who should be encouraged to generalize the re-
sults for polynomial equations of degree n > 0. ‘

For the benefit of those who may wish to see it, we spell out
here 1n greater detall a part of the proof of Theorem 274 on
rational zeros.. In the proof in the text, Equation (3) states

that

agd’ = N,

where N 1s an integer. Hence; p divides aoqn a whole number

[sec. 2-6]
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of times; that is, N times. We wish to show that, since p and
q have no common divisor greater than 1, it must be that p-
divides a,. '

First, we dispose of the specilal cases p =1 or gq = l.
The conclusion is obvious in either c2se; if p =1, then of course
p divides agy; if q =1, then Equat_on (3) becomes a, = pN, and
obviously p diwvides ag-

When neither p nor g 1s 1, we can appeal to the Funda-
mental Theorem of Arithmetic, that the factorization of positive
integers is unique, to write p and g as products of prime
factors:

P = p P1Py « oo Py 3 d =04y -+ Qs

where Py, ... » Py and Gy, ... 5 Gy are positive primes. None
of the p,'s are included among the gi”s and conversely, since
p and q ' have no common divisor greater than 1. Now consider
p and ayd, with '

n _ n n ny _

A1l of the pi‘s must occur as divisors of ao(qlnqzn...qm?). None
of them occur among the qin's. Hence, all of them occur 1n the
decomposition of ao into its prime factors. Therefore, “9 ;
divides aj-.. '

Answers to Exercises 2-6. Pages 71-73.

1. a) -1/2, 2 b) -1/2, 0, 2

2., a) 1, 2, 3 b) 0, 1, 2, 3

3. a) No rational zeros b) O

4, a) -1, 1/2,1 b) -1, 0, 1/2, 1
5. -1/2, 3/2, 1/3 '
6. 4/3, 1 +42, 1 -/2

7. No rational Zzeros

8. -2, -1, 2, 3

9. -2, 2 (Each of these is a zero of multiplicity two. See
: Section 2-8.)

10. -1, 1, 2, 3 51

[sec. 2f6]
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.11,
- 12 -

13.

14,
15.

16.

17.

‘18.

-3, -2, -1, 1,2
-3, 5/3, 2 +4/3, 2 - /3

x + % =n&>x" -nx+1=0 1f x £0. The discriminant

for this quadratic is n® - 4., If In] < 2, n® <4 and

n2 - 4 < 0, which means that the roots are imaginary.

(x+2) (x-1)(x-3)=x3-2%x2_-58x+6=0

a) 2. It is the negative of the coefficient of x° in
Exercise 14. ,

b) -5. It is the same as the coefficient of x in Exercise
14,

¢) =-6. It is the negative of the constant term .in Exercise 1l

a) 3/2 b) -11/2 c) -3

d) X - %xe - %% Xx+3=0
e) (x+ 2) (x - %) (x -3) = %3 - % x° . %% XxX+3=0

a) (x-r))(x-r,) (x-ry)

3
x° - (rl + ry + r3) X2 + (rlr2+ r,rot r2r3) X - TyTyra=0

a
b) Ef = --(rl +r, + r3)
a
1l
5—3" = rlr2+ I'lI'3+ r2r3
a
)
ay =TTl

Any 3rd-degree polynomial function with zeros -1, 1, and &4

1s f: x-—>a3(x3 - ux® _ox 4 4y,

From this, f£(0) = 4a3. Since the exercise specifies that
£(0) = 12, 1t follows that hay =12 and a; = 3. Hence,
the required function is

f: x-—>3x3 - 12x2

- 3x + 12.

52
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2.7. Decimal Approximation of Irrational Zeros. Page 73.

One method for calculating approximate values of irrational
harda 6 polytoitial functions is treated briefly in this section.
Tts virtue is that it requires only the techniques of synthetic
substitution and linear (straight-line) interpolation, which. are
applied in the light of information obtained by the ILocation
Theorem. We assume that students are familiar with the process
of interpolation from previous courses, but a brief illustration
here of the method may be helpful.

Suppose that for a given polynomial it is found that £(2.3) =
-0.62 and f(2.%) = 0.47. Figure TC 2-7 shows a possible graph-
ical interpretation. The curve intersects the x-axls at point P,
and the value of x at this point 1s the desired zero of the
function. (It is concelvable that the function might have three
or some other odd number of zeros between 2.3 and 2.4%. [See
Figure 2-4a, page 60, in the text.] Geometrically, this means
that the curve would cross the x-axls more than once in this in-
terval. In such a situation, linear interpolat.ion would probably
not be helpful.) We assume that between points A and B the
curve can be approximated by the stralght line AB. This line in-
tersects the x-axls at point Q, and the value of x at this
point is a reasonable approximation of the zero at point P.

1.09

 —

Figure TC 2-7. Linear Interpolation.

[sec. 2-7]
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The value of x at point Q 1s x = 2.3 + ¢, where ¢ 1s the
length of the segment DQ. Since triangles ADQ. and AFB are
similar, 1t follows that %% = %% . Substituting the lengths of
the known segments (undirected distances), we obtaia~6%T = g:gg ’
from which ¢ ~ 0,057. Hence, an approximate valus =f x at
point Q@ 1is x ® 2.3 + 0.06 = 2.36.

Answers to Exercises 2-7. Pages 73-74.

1. x = 3.0+, to the nearest 0.5.

2. a) x & 2,07, to the nearest 0.5.
b) x ®» 2.27, to the nearest 0.1.

3. a) x
b)

1.2+, o the nearest 0.1.
1.217, to the nearest 0.01.

2 2

»

4, Q/ﬁﬁ & 2.717, to the nearest 0.01.

2-8. Number of Zeros. Pages 74-80.

The statement of the General Form of the Fundamental Theorem
of Algebra, that a polynomial function of degree n > O has at
least one and at most n 2zeros, may come as a surprise to many
teachers. Most of us are accustomed to saying that every poly-

nomial of degree n > O has exactly n zeros. But from the
point of view of set theory, the set of zeros of fn ‘is the solu-
tion set of the equation fn(x)‘= 0. This set is [rl, Tps eves rk}
where k < n. It is possible for k to be less than n because
in listing the elements of a set no element 18 repeated. For ex-
ample, if fg: x—>»(x - 1) (x - 1) (x - 3), then the solution set
{x: f3(x) = 0) is {1, 3)}. In other words, the zeros of fq are
1 and 3. At the same time, however, we note that 1 1is a zero
of multiplicity two. Hence, the sum of the multiplicities of the
zeros 1s exactly three, and this is also the degree of the given
function. .

Included in this section is the graph of a polynomial function
that has zeros of multiplicity greater than one. We do not expect
students to spend any effort at this time in drawing such graphs,

54
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but the question may arise in class as to what they look like. A
more intensive treatment of this question appears in Chapter 3,
Section 3-10, after more efficient means of sketching graphs have
been developed.

Answers to Exercises 2-8. Pages 80-81.

1. (a) and (b) are unstable; (c), (d), and (e) are stable.
2. a) -1 of multiplicity two, and 2. ,
3rd degree ~- sum of multiplicities is 3.
b) 1 of multiplicity two, and -2.
3rd degree -- sum of multiplicities is 3.
¢) -1 of multiplicity three, and -2.
hth degree ~- sum of multiplicities is U4,
3. a) 1 of multiplicity two, -2 of multiplicity three.
b) 1 of multiplicity three, -2 of multiplicity two.
The solution set is {1, -2} for both equations.
4, (a), (b), (e¢), (d) are not closed, as shown by the following
l1ist of exceptions: ,
a) 2x -1 =0 has a root not an integer.
b) x2_- 2x ~ 2 = 0 has roots which are not rational.
c) x° + 1 = 0 has imaginary roots. '
d) ix + 1 = 0 has a real root.
(e) 1is closed. (There is a theorem which establishes this
fact.) v
5. So far as the specific examples are concerned, &/ji and 6~/jI
are solutions of x +1 =0 and x  + 1 = 0, respectively.

It

In each case, the Fundamental Theorem of Algebra guarantees
the existence of a comblex zero. If the student is familiar
with De Moivre's Theorem, he will know how to obtain, respec-
tively, four and six complex-number solutions. More generally,
any root of a complex number is a complex number. It 1s even
the case that all complex powers (or roots) of complex numbers
are complex numbers. Hence, "super-complex" numbers are un-
necessary. (See Fehr, Howard F., Secondary Mathematics, A
Functional Approach for Teachers, D. C. Heath, 1951.)

[sec. 2-8]
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2-9. Complex Zeros. Pages 81-8l4,

In this section the treatment of the zeros of polynomilal
functions 1s extended to the case where the zeros are complex
numbers (which may be reai). The Complex-~conjugates Theorem shows
that 1f a polynomial¥* with real coefficients has. complex zeros,

with lmaginary part not 2zero, then these zeros must occur in pairs
(conjugates). An 1llustrative example shows that the coefficients
need not be real if the complex (imaginary) zeros do not occur as
conjugates. These 1ideas are extended in the exercises to include
real zeros which are conJugate surds of the form a + b~f3 and

a - by/c for specified values of c. v

Answers to Exercises 2-9. Pages 84-85,

1. [x - (2 ; 1)) [x - (2 -4))[x ~1) [x - (3 -21)] [x - (3+21)]
(x° - 4x + 5) (x - 1) (x° - 6x + 13) |

(x" - 10x3 + 42x® - 82x + 65) (x - 1)

il

il

il

- 11xt + 5263 - 126 4 2u7x - 65

bl
The coefficient of xl is ~11. The sum of the zeros is

(2 +1) + (2 -1) +1 + (3 ~21i) + (3 + 21) which is 1.
The sum is the negative of the coefficient of x'.

The constant term is -~65.  The product of the zerc< 1s

(2 + 1) (2 - 1) (1) (3 -~ 21) (3 + 21) which is 65. The
product is the negative of the constant term.

2, a) x—>»x - (2 +31) =x -2 ~ 31

b) x-—[x - (2 +31)] [x - (2 - 31)] =
[(x - 2) - 31] [(x - 2) + 31] = X2 - bx + 13

*Here the word "polynomial" i1s used loosely to avoid cumbersome
sentence structure. More precisely, the statement might read,
"... 1f a polynomial function, defined by a polynomial with real
coefficients, has complex zeros with imaginary part not zero, then

the 2zeros of the function must occur in pairs." Recall the state-
ment on page 32 of this Commentary regarding the use of the word
"polynomial".

[sec. 2-9]
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3. a) 1, =—5—*=,

-1+ 13 -1 - 143
l-iv3

5
b) -1,—1—§AL1£§, 1 - 143
>
-1+ 1415 -1 - 1415
c) 2’ 2 F 2

a) i, -i, 21, -21

e) 1 of multiplicity two, 31, -31

f) -1, i, -i, each of multiplicity two.

g) 1, i, -1, each of multiplicity two. Note that these roots
are the negatives of the roots in (£), as would be expected
from inspection of the two equations.

b, 8

5. Using either of the proofs of Theorem 2-7 as a model, two
proofs may be shown, ' Only one is given here.
Given: f(a + b-/E) =0, a and b are rational numbers,
b # 0.
To prove: f(a - b+/2) =0 .
Proof: ©Let p(x) x - (a+ 0bv/2)] [x - (a - bv2)]
[(x -a) - bv2]) [(x - a) + bv?2]

(x - a)2 - 2b2,

[

The coefficients of p(x) are rational. If f(x) is divided
by p(x) we get a quotient q(x) and a remainder r(x) =
hx + k, possibly of degree 1 (but no greater), where h, k,
and all coefficients of q(x) are rational. Thus,

£(x) = p(x) + q(x) + hx + k.
This is an identity in x. By hypothesis, f(a + b+/2) = 0,
and from p(x) above p(a + b+/2) = 0, so we get

O =0+ ha + hbv/2 + k.

If hb 1s not zero, we get '

V2 = :EEH%—E , where h, a, k, and b

are ratlonal, which is impossible, So hb = 0, and since b % 0,
h must equal zero, and as a consequence k must equal zero.
Therefore,
£(x) = p(x) + q(x).
51
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10.

Since p(a - b+2) = 0, 1t follows that
f(a - b VE) = 0. q.e.d.

x—>[x - (3 +2/2)] [x- (3 -2J/2)] = x° - 6x + 1

For a + b~/§, the proof given in the answer to Exercise 5
will be correct if /3 1is substituted for /2.

For a + b~/H there 18 no comparable theorem since the
root is rational and there is no conjugate surd. If a proof
like that in Exercise 5 is attempted, it breaks down at the
step o

VT - Bk
If U4 1s substituted for 2, both sides are rational and the
contradiction needed in the proof does not appear.

a) f: X—>X° + (-2 +2/3) x -3+ 2/3

b) f: X %O - 5x2 - 9x - 3

f: x—-—>x4 - 1Ox2 + 1 (The zeros of the function are /3 4-v45,

V3 -2, -J/3+/2, and -3 -J2.)

a) (1) Degree 2 (x->x2 - 22 x + 3)
(2) Degree 2 (x—>x° - 2x + 3)
(3) Degree 2 (x—>x° - 2+/2 x + 5)
b) (1) Degree 4 (x--->xll - 2x° + 9)
(2) Degree 2 (x-4>x2 - 2x + 3)
(

(3) Degree 4 }L_>Xu + 2x° 4+ 25)
(Solution for part (1) of (a) and (b).
A polynomial function having only the zero 1 + Vg'is
f: x—>»x - (1 +/2). This function has imaginary coeffic-
ients, but we can obtain from it a function with real coef-‘
ficlents as follows. Write the equation x - (1 ++/2) =0
in the form x -+2 = 1. Now square both members and re-
arrange the terms to obtaln the equation

x2 -2J2x+ 3 =0.
This 1s the equation corresponding to the function given as

[sec. 2-9]
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the answer to part (1) of (a). It has real coefficients. If
we now write this equation in the form X2 + 3 =22 x and
aﬁain sguare both members, we obtain the equation

- 2%x“ + 9 = 0 with rational coefficients. From this we
have the answer to part (1) of (Db).

An alternative procedure for the two parts of this ques-
tion depends upon recognition of the fact that if 1 ++2 1is
a zero of a polynomial function with real coefficients, then
the complex conJugate -1 +./2 1s also a zero of the function.
Hence, the function of minimum degree having the zeros 1 +4/2
and -1 +./2Z willl be the answer to part (1) of (a). To ob-
tain a function of minimum degree with rational coefficients,
the additional zeros 1 -./2 and -1 -+/2 must be introduced.
Hence, the function will be of 4th degree and will have the:
zeros 1 +2, -1+J/2, 1 -2, and -i -/2. This is the

function given as the answer to part (1) of (b).

(O3
L

[sec. 2-9]
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1

Answers to Miscellaneous Exercises, Chapter 2. Pages 88-92.

This set of exercises contains problems of two kinds. Num-
bers 1 to 21 are review problems and are, for the most part, sim-
1lar to those contained in the wvarious sections of the chapter.
‘Numbers 22 to 35 extend the ideas of the chapter somewhat and are
in general more difficult than the first set.

1. a) £(0) =9 b) £(-3) = -8+ c) £(3) =7
2. a) £(0) = -3 b) f(-2) = -31 ) £(3) = 299
3. Quotient ‘ Remainder
a) 3x° + x° - 2x -1 -
b) %3 - x4+ x -1 0
c) 5x2 +hx -2 -16
y, Quotient Remainder
{ a) x° - x + 3 I
b) 27x3 - 18x° + 12x -8 32
5. a) ‘
1 -6 11 -6
1 .-8 27 |-60 |} -2
1 -7 18 |2k -1 x3 —6x2 + 11lx - 6
1 -6 11 | -6 0 - (x - 1) (x-2) (x - 3)
1 -5 6 0 1
1 -4 3 0 2
1 -3. 2 0 3
b)
1 -3 -4 12
1 -5 6 0 |-2 4
1 -k ¥ i x3 - ax® - ux o+ 12
1 -3 -4 112 10 = (x+2) (x - 2) (x - 3)
1 -2 -6 | 6 1 :
1 -1 -6 0 2
1 o -4 0 3
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c)

1 -2 -1 2 0

1 -4 7 -12 | 2% | -2
1 -3 o ol o | -1

xu - 2x3 - x2 + 2x
1 -2 -1 2 0 0
: = x(x + 1)(x - 1)(x - 2)

1 -1 2 ¢ 0 1
1 J 21 0 0 2
1 2 2 8 | 24 3

l
w

6. f£(2) = -2 + &k = 22; hence, kK =

it

£(- %) = Zmé.h = 0); hence, k = 7,

4(x +'%§-)(x - %g )

a) (2x +/3)(2x -3
b) (/Tx + 31.)(Tx - 31)
¢) (x -2 - 1y3)(x -2+ 1/3)

a) ax - 3Ly (x -2 55T ) o L (6x - 5 - Y/37) (6x-5+ VA7)
<

i

1

9, a) -2<x<-l, 0<x<l, 2<x<3

b) 1<x<K?2

rojw

10. a) -2, O,
b) -2, -1, 1

¢) _2’3+ﬁ’ 3-5/'1‘

d) No rational roots. (By Theorem 2-4, if the equation had
a rational root‘ it would have to be one of the followilng:
+1, +2, + 1/3, + 2/3. By synthetic substitutlon we find
that none of these 1s a root of the given equation.)

e) '35 5/35 2 +ﬁ: 2 ‘ﬁ

11, For any real number c, g(c) = 2f(c). Hence, if both graphs
are drawn with the same scales on the corresponding axes, each
point on the graph of g will be twice as far from the x-axis
as the corresponding point on the graph of f. Both graphs,
however, willl have the same x-intercepts; namely, -2, 1, and 3.

- @1
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(These numbers are, of course, the zeros of each function.)_

12, fix—s(x + 1)(x - 2)(x - 3) = x> - 4x% £ x4 6

(Or use the relationships between the zeros and the coeffi-
clents.) L

3 3

13, a) fix-—>»-1(x" - Ux® + x + 6) = -x° + 1x° _ x - 6

b) fix—>2(x° - 4x® 4+ x + 6) = 2 x° - 10x° +2x+15

(See the discussion in this volume of Exercise 18, Section
2-6.)

14, A general procedure for problems of this kind is as follows:
- Any polynom%al function of degree 3 can be written as
_ 2
fs(x) = a3x" + ayx" + a;X + ag.
From the given information,

£(2) = 8a3 + ba, + 2a; +ay =0
£(3) = 2Tay + 9a, + 3a; + a5 = 0
£(0) =ay =6

£(1) = az + a, +a; +ay =12

Solving these equations simultaneously, we obtain ag = 5,

a, = -24, a; = 25, ag = 6.

2
‘Hence, the required function is:
fix—> 5x° - 24x2 4 25x + 6

15. x %X 0.6"
Behavior of Graph

16. Zeros y-intercept for large |x|
a) 2, multiplicity two b dominated by x°
b) 2, multiplicity three 8 dominated by -x°
c) 2, multiplicity four 48 dominated by 3x
d) 1, multiplicity two
-2, multiplicity one -4 "dominated by ~2x°

(For a discussion of the vehavior of the graph of a polynomial
function for large |x|, see the text, page 52. For example,
the polynomial in part (a) of this Exercise may be written
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18.

19.

20.
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I
"
[
&
+
=

as y

i
»

As |x| increases, the value of the expression in parentheses
comes closer and closer to 1. Hence, for large |x| the
x2-term dominates all other terms, and the graph behaves like

the graph of y = x2. Note, however, that thils graph does

not actually agpfoach y = x2. Indeed, the vertical distance

between this curve and that of y = x° is |Ux - 4|, waich

can be made arbitrarily large by making |xi large enough.

a) 1 of multiplicity two, -1 of multiplicity three

b) -1 of multiplicity two, - % , and - %

a) -2 of multiplicity two, and 1
b) -3 of multiplicity two, -2, and -1

Solution: (x + 1)(x + 2)(x + 3) = (x+1)(x + 2)(x+3)(x+4)
(x + 1)(x + 2)(x +3) - (x+ 1)(x + 2)(x+ 3)(x+U4) =0

(x + 1)(x+2)(x+3) [1-(x+4)1=0
(x + 1)(x + 2)(x + 3)(-x -3) =0

S1(x + 1) (x + 2)(x + 3)2 0

x = -1, -2, and -3 of multiplicity two,
a) 3 b) 3 c) 3
(Although the exercise does not ask for them, 1t may be
helpful to glve here the polynomials having the specified

I

zeros,
a) xS + (1 - 1) x° + (-6 - 1)x + 61
b) x° - hx® + (48 + 141)x + (192 - 561)

‘c) 33 + (2 - 1)x2 + (-3 - #)x + (-10 - 531) )

a) 4 b) 5 c) &
(The polynomials are:

a) x4 + x3 - 5x2 +x -6

b) x2 - bxt - 96x° + 384x2 + 2500x - 10,000

c) - 6x% ¢ 25 )

o
W
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21. a) f(x) % - 8x° + 19x - 14

b). f(x) X - x4 + 1S - 14x° 4 121x - 121

(The roots are 1, ~/§ + 31, Vf§ - 31, —~/§ + 31,
-2 - 31)

£(1) = -7 + 1 a) f£(1 - 1) =-2+ 41
£f(1) =0 e) f(-1+ 1) = -6+ 81
£(1 +1) = -6 - 81 £) f(-1 - 1) =-2 - W1

3

22. a)
)
)
23, f(x) = 2x° - 3x2 +x ~5
(s
)

o o P

ee method of solution glven for Exercise 1k.)
‘ 2

2k, Quotient = (a - b)x - ab + b (x - a)(a - D)

Remainder = O

W

(x - b)(x - ¢c)

b) Quotient = x° - (b + ¢)x + be
Remainder = O

25. Since f_(a) = O Dby hypothesis, f(x) 1s exactly divisible
by (x - a) or '

(x - a) - alx).

b,

£ (x)

i

If now x
fn(b) = (b - a) - a(b) which is equal to O.
Since b # a, b - a # 0, therefore, a(b) must equal zero.
1f q(b) = 0, q(x) is divisible by (x - b) without a
remainder, or
a(x) = (x - b) - r(x), and so
£ (x) = (x - a) - (x - b) . r(x).

n n

26. 1If _fn(x). x? - a® then - fn(a) =a -a =0 which means

£, (x) or x? - a® 1s divisible by (x - a). If n is even,

fn(—a) = (-a)® - a" = (-1)™(a™) - a®. Since n is even,

(-1)® = +1 and a" - a" = 0.

64




55

~ 27. Maximun number of: “ Pogitive Roots Negative Roots
’ a) 2 1
)] 2 1
c) 1 1
d) 1 0
e) 0 1
f) 0 0

28. We gilve two proofs, the first one using the hint given in the
text. '

First proof:

To form a polynomial having 2 + /3 as a root, we set
- (/2 +/3) = 0. Now we have to rationalize the coeffi-
cients
b 4 -~/— —~f- and squaring we get

x2 - 2/2x + 2 = 3.

x° -1 = 24/2x and squaring again, we get
2t - ox® +1 = 8x°. . ’

f(x) = x4 - 10x° + 1 = O.

If V2 ++/3 1s rational, it is a rational root of
£f(x) = 0. But i1f £ (in lowest terms) is a rational
root of f£(x) = O, then by the rational roots theorem

p must divide 1 and q must divide 1. Hence §_= +1 ,
or §=-1. But /2 ++/3 #1 and /2 +4/3 £ -1.

Hence, +2 ++/3 1is not a rational root of f(x) =
and therefore must be irrational.

Second proof: Assume that V/_-+~/§ is rational; i.e.,
assume that 3 + 2 = R , where P and q are integers
with no common integer divisor greater than 1, and ¢ % 0.

‘\/§+‘\/—=§:
or - «/§=§-~/§.
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29.
30.

31.

32.

33.

Squaring both members of this equation and then .solving for

J2, we obtain o o
- .
2pq

Since p and q are integers, this equation asserts that
/2 1is rational (or undefined if p.= 0). But this conclusion

 contradicts the known fact that /2 1s irrational. (The

irrationality of v2 can be proved, if desired.)
Hence, the assumption that /2 ++/3 1s rational is false.
Therefore, +/2 ++/3 1s irrational.

a) -2+ 1 b) -2 - 1
a) 3 + 41

b) (3 - Ui)(2 -1) =2 - 111

c) (3 + 4i)(2 -1) =10 + 51

(The property referred to in the hint is this: if f(x) 1is

a polynomial with real coefficients and if f(a + ib) = u +1iv,
then f(a - 1b) = u - iv. See the second proof of Theorem 2-7
given in the text.)

a) £(2 +43) = 6 +/3)
These numbers are conjugate surds.
£(2 -4/3) =6 -~ﬁi?
b) g(2+v3) =15 +_2’/§ The property illustrated in (a)
g(2 -ﬁ) =9 - 6.3 does not hold.
a)- -3, 2 c) 4
b) -2, 2 d) -3 <x< -2o0r

2<x< 3

The four terms of the sequence can be shown (by successive
differences) to be of the form n2 + 1. Hence, the polynomial
of minimum degree 1is n2 + 1. Now if we add to this any
polynomial which vanishes at n =1, 2, 3, or L, we will have
another polynomial answering the examination question. The
most obvious polynomial to add is (n - 1)(n - 2)(n - 3)

(n - 4), since this vanishes at n =1, 2, 3, or 4. If we
multiply this by any nonzero polynomial A, the result will
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be another polynomial satisfying the requirements. Since
there 1s an unlimited number of polynomlals of this form, a
general answer 1s

n® + 1+ Aln - (n - 2)(n - 3)(n - &),

where A 1s any nonzero polynomial. (In particular, A
could, of course, be any nonzero constant.)

If a, b, and c¢ are zeros of f:x——-‘>x3 + 7x2 + 5, we are

to find a polynomial function with zeros a + 2, b + 2, and
¢ + 2., To do thils, we want a function g having zeros of
the form X =1r + 2, where »r = a, b, or c¢. From this,
r =x - 2, and since r is any one of the zeros of f,

gt x—>f(r) = f(x -2) = (x -2+ 7(x -2+ 5

= x3 + x2 - 16x + 25

i1s a polynomilal function satisfying the requirements.

' It should be noted that this method can be used only
when every zero of the new function 1s related to a zero of
the glven functlon by the same rule; 1in this particular case
by adding 2.

Using the method of Exercise 3%, x = 2r + 1, where r = a,
b, or ¢, glves us r = X é 1, Substituting this. in the

given polynomial, we get (}_é_l)3+ 7(3_5_1)2 + 5. This can

be multiplied by a_constant without affecting the zeros, so
we expand and then multiply by 8 to eliminate fractions.
This glves the required function,

g: x—~>x3 + llx2

- 25x + 53.
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Illustrative Test Questions for Chapter 2

Teachers‘should refer to page 26 of this commentary for re-
marks about the use of these illustrative test questions. 1In
this particular set of questions, the items marked with an asterisk
are not necessarily more difficult, but deal with ideas that haQe
not been emphasized in the text. For example, problems like
Exercises 13 and 16 are discussed in the text only in the set of
Misclellaneous Exercises at the end of Chapter 2.

1. If f(x) = x3 - 6x2 + 11x + 10, find f(1), f£(2), and £(3).

2. Given f(x) = 2x° - 3x - 2, find the points on the graph of

y = £(x) where the graph crosses

a) the x-axis ¢) the line x
b) the y-axis d) the line ¥y

1
~

3. Gilven f:x——>x5 - 5x3 + 5x2 - 1.
a) Find all zeros of f.
b) Write the polynomial in factored form as a product of

linear factors with real coefflcients.

b

4, Pind all gzeros of f:x-+>3x5 + Ux" - 26x3 - 42x2 + 7x + 6.

5. Find the real root of x3 -3x+1=0 between O and 1,
correct to 2 decimal places.

6. Find the quotient and remainder when 3x4 + 7x3 - 5x2 - X + 2
is divided by x + 3. Check your answer by multiplication.

Form an equation of minimum degree having the roots -2, 2,
and 3 + 1, if
a) imaginary coefficlents are allowed;
b) the coefficients must be real.

#8. Form an equation of minimuﬁmaegree having the roots 2 and
5 - 342, if
a) irrational coefficients are allowed;
b) the coefficients must be rational. :

¥9., Find the quotient and remainder when ox3 + (2 - 1)x + 3 1is
"divided by x + 1.
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¥10. Find a polynomial f£(x) for which f£(0) = 8, if it is known
that f has the zeros -1, 1, -2, and 2.

*11. Which of the followlng are factors of

f(x) = ox13 4x56 + 3557 J3x 4+ 4 2
a) x -2 ' c) x+ 1
b) x -1 d) x+ 2

¥12. Given the equation
(x + L)(x + 2)2(x +3) = (x + 1)(x + 2)(3x + 5),
find the roots and their multiplicities.

*13, If f(x) and g(x) are polynomials with real coefficients
such that f£(2 + 31) =1 -1 and g(2 + 31) = -3 + b1,
evaluate f(2 - 31) - g(2 - 31i).

*14, Find an equation of minimum degree with rational éoefficients
having 2 ++/3 and 2 + 1./3 as roots.

3

*15, Gilven the equation 32Jx~ - 6x2 + x + 2 = 0, find, without

solving the squa’..o:.,
a) the sum of ivs roota,
b) the product of its roots.

*¥16, Without solving, find the maximum possible number of positive
and negative roots of the equation x5 + 3x3 + 4x2 -4 =0,

Answers to Illustrative Test Questions for Chapter 2.
1. f£(1) =16 £(2) = 16 £(3) = 16
2. a) (-1/2, 0) and (2, 0), since 2x% - 3x - 2 = 0 when

X = =1/2 or 2.

b) (O, 72), since f£(0) = -2,

c) (7, 75), since f£(7) = 75.

d) (-3/2, 7) and (3, 7), since 2x% - 3x - 2 = T when
x = =3/2 or 3.
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a) The only possible rational zeros are 1 and -1,

1" 0 -5 5 0 -1

1 1 -b 1 1 0 1
1 2 2 -1}| ol
i 3 1 0 1
x2 +3x+1=0 when x =.:§%§zﬁ5
Hence; the zeros afe- 1-- of multiplicity three, 29_5315 ,
and é .
b) f(x) = (x - 1)3(x - :§_§A£55(x _ :ﬁLéiiﬁa

%(X - 1)3(ex + 3 - V/B)(2x + 3 +4/3)

The possible rational zeros are + 1, + 2, + 3, + 6, + 1/3,
and + 2/3. )

3 4 .26 -42 7 6

3 7 -19 -61 -54)| -48 1

3 10 -6 -54 -101|-196 | 2

3 13 13 -3 -2 0 I~

3 10 3 -6 4] -1

3 7 -1 -1 ol -2 ,~

3 8 s5/3|-4/9|1/3

3 9 s5|7/3|2/8

3 6 -3| 0]-1/3.~

3x° + 6x - 3. = 3(x2 +2x - 1) =0 when x = :g—%iég =-11./2

The zeros are -2, -1/3, 3, -1 +4/2, and -1 -./2,
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5, f_‘(x) = x3 -3x+1=0

1 0 -3 1

1 1 -2 -1 1
l 5 -2-75 _'375 '5
l )4 -2.8)"’ ".136 -)"’

é—-
1 3 -2.91 .127 .3
o ... Therefore, x = 0.3 + ¢ By interpolation, l% = 41%%

6. Quotient = 3x3 - 2x2

+ X - 4, remainder = 14
Check: (x + 3)(3x3 - 2x% 4 x - b)) = 3xu + 7x3 - 5x2 - x - 12
Adding the remainder 14 gives the original polynomial.
7. a) (x+ 2 (x-2)(x-3-1) = x3 4 (-3 - i)x2 - Ux + (12 + 41) = 0.
b) (x+2)(x-2)(x-3-1)(x-3+1) =(x2- uer-'éi+1o)
0

= xt - 6x3 4 6x2 4 2bx - 40 =

8, a) (x-2)(x-5+3/2) = x> + (-7 + 3/2)x + (10 - 64/Z) = O
b) (x-2)(x-5+3/2) (x - 5 - 3+2) = (x - 2)(x° _ 10x + 7)
= x> -12x° + 27x - 14 = 0
%9, 2 o 2-1 3 L:i
-2 2 wliy
2 -2 bt | -1+1
Quotient = ox% - 2x + 4 - i, remainder = -i + 1
0. £(x) = ay(x + 1)(x - 1)(x + 2)(x - 2)
=2, (x® - 1)(x2 - ) = ay(xt - 5P 4 1)
Since f(0) = ha) = 8, ay =2

)
2x‘ - le2 + 8

71

Hence, f(x)
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*11,  (b) and (ec)
Since f(1) = £(-1) = 0, (x - 1) and (x + 1) are factors.
».T should be obvious that the size of the exponents makes
values of 2 and -2 dimpossible. 2(% 2)73 contains . 23
digits, while -4(* 2)5® contains only 18 digits. Hence,
the first term will be numerically approximately 100,000
times as large as the second term, and f(f 2) could not
possibly be 0.

*ie. If (x + 1)(x + 2)2(x +3) = (x + 1)(x + 2)(3x + 5), then
(x+ 1)(x+2) [ (x+2)(x+3) - (3x+5)] =0,

(
(

(x + 1)3(x +2) =0

+1)(x + 2)(x® + 5x + 6 - 3x - 5) =0

»

»

+ 1)(x + 2)(x2 +2x +1) =0

The roots are -1 of multiplicity three, and -2,
*13, f(2 - 31) + g(2 - 31) = (1 + 1)(-3 - 41) =1 - 71
(See Exercise 30 in the Miscellaneous Exercises for Chapter 2.)

*14, (% - 2 =3 (x = 2 +V/3)(x - 2 - 1/3)(x - 2 + 1/3)

2

= (x5 - 4x + 1)(x2 - ix + 7) = K 8x3 + 2ux® - 32x + 7 =0

#15, a) The sum of the roots = -a2/a3 = 42
b) The product of the roots = -ay/ay = -2/3
(See Exercises 15 to 18 in Section 2-6.)

¥16, f(x) has one variation in sign, so there 1s a maximum of
1 positive root.
f(-x) has two variations in sign, so there is a maximum of
2 negative roots.
(See Exercise 27 in the Miscellaneous Exercises for
Chapter 2.)




Chapter 3
TANGENTS TO GRAPHS OF POLYNOMIAL FUNCTIONS

v

~Introduction.

Our treatment of the tangents to polynomial graphs 1s based
upon (a) a factoring procedure and (b) the solution of a simple
inequality'involving absolute values. We illustrate this statement
by an example.

' To study the graph G of f: x—>2 + 3x - 4x% near P(0, 2),
we first write

2 + 3x - 4x? = 2 + (3 - 4x)x (1) (Factoring step)

This step may be motivated by observing that we want a straight
1ine through (0, 2), hence a line whose equation has the form

y=2+mx (2)

where m 1s the (constant) slope. We therefore write (1) as
nearly as possible in the form (2). Note that in this chapter 1t
i1s convenient to write polynomials in ascending powers of Xx.

We cannot hope, of course, to make (1) exactly like (2) since
3 - 4x 1is not a constant, Our problem is to replace 3 - 4x by
the right constant m to obtain the equation of the tangent.
' It 1s easy to guess that the constant m which we seek 1s
simply 3. The intultive content of this guess is that ~4x 1is
arbitrarily small for X numerically small enough. Since =Ux
can be elther positive or negative (depending on the sign of x),
it is advantageous to use absolute value notation and write our
statement as follows:

|-4x| 1is arbitrarily small for |x| small enough.

To formalize this statement, we tranSlate "is arbitrarily
small" by "<€, whereg 1is any positive number, however small."

We then have

|-4x| <€ for |x! small enough.
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Since the. absolute value of a product is the product of the
absolute values (See Section 1-4) we may write
bx] < € for |x| small enough. (3)
.o Since  4|x] < € -1is equivalent to |x| < —%—, (3) may-be- -
. replaced by the more precise statement . o
blx] <€ rfor |x| < —%— .
That is, we now know exactly what values of |x| are small enough.
In the text, a method has been given for. visualizing the
meaning of this result in terms of the graph. We may refer to
this picture as the "wedge" interpretation. For the present
example, we are assured that if we stay within the vertical strip
Ix] < —%— (See Figure TC 3-1), the graph lies in the wedge bounded
by the two lines

Ly: vy =2+ (3 + €)x.

and L, y, =2+ (3 - €)x, y

/-i
4

AP“

Figure TC 3-1

Of course L: y =2 + 3x 18 the only stralght line which
lies in all of these wedges and therefore the only line which
approximates G in all intervals about P.

It 1s apparent that G, in fact, lies below L on both sides
of P, If you wish you may introduce the phrase "G is concave

74
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downward at ©P" to describe this "shape." This terminology has not
been used in the text of the chapter.

The modlficatlons of this discussion for the case where G 1s

_._concave upward or has a point of inflection at P will be clear -
from the examples in the text.

Teachers will note that we have used neither calculus notation
nor calculus language. In fact, we have not used (and the teacher
is urged not to use) even the traditional concept of a secant PQ
and 1ts associated slope. Consequehtly, we have not defined the
slope of the tangent to be the 1imit of the slope (%%%9) of the
secant as the run approaches zero. Indeed the words."limit" and

Mapproaches" are not used. (The customary symbol " —'" for
"approaches" occurs in the text only as part of the mapping no-
tation for a function and, of course, has a different meaning.)

The choice of the present mode of exposition was deliberate.
The idea behind the concepi of 1imit has here been reduced to its
simplest core. This treatment. therefore, furnishes an excellent
preparation for a full course in calculus, We‘believg moreover,
that in the time avallable for the study of tangents, 1t would
be difficult to teach the conventional method without incurring
the serious risks of misunderstanding which historically have been
associated with it. The method adopted here is simple ana logically
sound and it does not raise the difficulties connected with the
1imits of quotients.

In Chapters ¥ and 5, the wedge method will be applied to find
the slopes of the graphs of exponential functions and of circular »
functions,

75 .
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Answers to Exerclses 3-2.

Page 97.

1, y=1-x

2 + 3x

w
«
I

2.

76
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7N\

3 + 2x

.1 + 2X



Ansiers to Exercises 3-3. Pages 100-101.

1. Since -.01 < x< .01

.99 <1 + x < 1.01.
If x > 0, we have
.99x < (1 + x)x < 1.01x

and 1+ .99x <1+ (1 + x)x< 1+ 1.01x.
If x < O, )

.99x > (1 + x)x > 1.01x
and 1+ .99x > £(x) > 1 + 1.01x.

2. a) For 0< x< .01
1<1+x<1.01
1+x<1+ (1L+x)x<1+1.01x

b) For -.01< x<0 y
99 <1 +x<K1
.99x > (1 + x)x > x
1+ .99x > f£(x) > 1 + Xx.

Lls y =1+ 1.01x S

L: y=14+%x v ////
. = L

L2. y 1 + .99x L,

Figure for Ex. 2.
T

[sec. 3-3]
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3. x>0 for all x # 0.
Hence f(x) >1 +x, x #O0,
2
H If 0<x <., then 0<x°< .01, 1<1+x <1.01and
x< (1 + x2)x = £(x) < 1.01x, )
If 0>x>-.1, then 0 < x2 < .01, 1 <1+ x° < 1.01, and
x> (1 + x%)x = £(x) > 1.01x.

y=1.0lx
N

~—y=X

> X

Figure for Ex. U4

5. a) (o0, 2)
b) |x] < .01e=>-,01 < x < .0l<=>-.,01 < -x < ,01¢==>
2,99 ¢ 3 - x < 3.01. . (1)
If x>0, (1) is equivalent to 2.99x < (3 - x)x < 3.01x
or 2 +2,99x< 2+ (3 - x)x = f(x) < 2+ 3.01x, and
if x € O the inequalities are reversed.

C) /\y

A§§§4hy=2+299x

y=2+3.0!x

v
b

Figure for Ex. 5

73
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6. If »#o0, x > 0, and hence
2 + 3x - x° <2+ 3x

“le y =2+ 3.01x
I y=2+ 3x
L2: y =2+ 2.99x

. Figure for Ex. 6

7. a) %2 - 2x -1 = <1 + (=2 + x)x; f: x—>-1 + (-2 + x)x,

b) If 0 < x < .01, the lower bound is easily improved thus
2 < -2+ x< -1.99
-2x < (-2 + x)x € -=1.99x
-1 - 2x ¢ £(x) < -1 - 1.99%

c) Lyr -1 - 2,0lx =y
L: y = =1 - 2x

L2: y = "1 - 1.99}(

Figure for Ex. 7

8, a) f: x—>»3 - 5x - 4x® = 3 + (-5 - bx)x
b) Ir |-bx| <¢ , i.e. |x <,
£(x) 1lies between y = 3 + (-5 +€)x
and y=3+(-5-€)x,

79
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Thus if |x| < .02, € = .08
and f£(x) lles between v =3 - 4,92x
and y =3 - 5,08x :
__ near P(0, 3). o N
¢) If €= .002, and |-lx| < .002, |x| < .0005.

3-%, The Behavior of the Graph Near P. (continued) Pages 101-104.

The notion of dominance 1s baslc to an understanding of the
development in thls section. For thls reason a review and ex-
tension of Section 2-3, page 52,1s suggested. We there observed
that for |x| very large, the term of highest degree of the
polynomlal dominates the ldwer degree terms. In the present section
we are concerned with the situation when |x| 1s very small. In
this case, the term of lowest degree domlnates the higher degree
terms., Thus 1if

_ n-1
f(x) = anxp +a X oo+ 8 X+ ag

where a, % 0, the flrst term anxp dominates all other terms 1f
|x| 1s suffilciently large; the term of lowest degree, ag,
dominates all other terms for |x| sufficlently small. Further-
more, we note that the term alx dominates all terms of higher
degree for |x| sufficlently small. This follows at once since

- we can write g(x) = £(x) - a, and use the fact that the term of
lowest degree, a;x, dominates the other terms of g(x) for |x|
sufficlently small.

Answers to Exercises 3-%4, Page 105.

1. f£(0) = 2, tangent at (0, 2) is y =2 + x,

— >
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2. Point of inflection at (0, 2); equatlon of tangent is ¥ = 2.
' A

L 7

3. P(0, -1); tengent: ¥y = -1 + 2X.

AN
N’

il
=

4, P(0, 4); tangent: ¥

\J

5. P(0, U4); tangent: -y = 4 - 3x,

81
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6. P(0, 0) tangent: y = 2x.

'.7. f(x) =2+ x4+ (3 - x)x2

If |x| <e, f£(x) 1lies between 2 + x + (3 +¢ )x2 and

2+ x+ (3 - €)x2.
For € = .01, |x] < .Ol.
8. f(x) =2 + X - x' =24 (1 ~ x)x3

If |x| <e, £(x) lies between 2 + (1 +€ )x3 and

For € = ,01, |x| < .01.

9. f(x) =1 + 2x - x° + u® =1 + 2x + (=1 + Hx)xe.

If |4x|] <€ , or x| < %%3 f(x) 1lies between 1 + 2x +

(-1 +€)x° and 1 + 2x + (-1 -€ )x?. If€ = ,01, |x| < .0025,

10. f£(x) =14 - 2x3 + x4 =4+ (-2 + x)xs;

If x| <e, f(x) lies between 4 + (-2 +€)x3  and
b + (-2 -¢ )x3. IfE = .01, |x| < .o1.

11, £(x) =4 - 3x + %3 - 7x2 = 4 - 3x + (1 -k7x2)x3.

Ir |7x2| <€, or x° ¢ $%-, f(x) lies between

3 3

b - 3x+ (1 +#€)x° and ¥ - 3x + (1 -€ )x°.

Ife = ,01, |x| <‘/7:‘<1)—6 = 7—(1)-y/7"x 0.038

12, f£(x) = 2x - x* + 4x3 = 2x + (-1 + ﬁx)xe.

1r |x| < %, £(x) lies between 2 + (-1 +€)x°

2

and 2 + (-1 -€)x., If€ = .01, |x] < .0025,

32
[sec. 3-4]
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3-5. The Tangent to the Graph at an Arbltrary Point P and the
Shape Near . Pages 105-109,

Let us cons‘der the problem of this section from an intuitive
geometrical standpoint. Although this treatment 1is not included
in the text, it may be considered as optional or supplementary.

The problem of finding the tangent to a polynomial graph G
at an arbltrary point P(h, f(h» guickly reduces to the problem
of translating the y-axls so that it passes through point P.
Thereafter, procedures previously developed will enable us to
solve the problem,

To illustrate we consider Example 1 on page 100,

Example 1. Find the tangent to the graph G of
f: x—> Y% - 3x + 2x° at P(1, 3).

We translate the y-axis so that it passes through P(1, 3),
as shown by the dotted line in Figure TC 3-5. Since the y-axis
has been shifted one unit to the right, any point on the xy-plane
has coordinates @x:~1), y) with respect to the translated axes;
more specifically, any point on

G has the new coordinates

((x - 1), f(x)). If we write
(x - 1) = x', then the ex-
pansion of f(x) in powers of

(x - 1) becomes

f(x) =3+ x' + ox12, By the

method of Section 3-4 we write

the equation of the’ tangent
y=3+x!

or ¥y=3+(x-1)

at point P which has coordi-

nates (0, 3) with respect to the

translated y-axis. i
The teacher should note that

some of the exercises in this

IR &

,
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section may be reserved for
practice material or review at

Iigure TC 3-5
[sec. 3:5]
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the close of the chapter. For example, an appropriate assignment
might be Exercises la, 1b, 14, 2a, 2b, 3a, 3b, 3c,.

Answers to Exercises 3-5. Puges 109-110.

1. a) 1 2 % 3 |2 L

1 4 12 27 '
1 6 24
1 8
£(x) = (x - 2)3 + 8(x - 2)2 + 2U(x - é) + 27
T: vy = 24(x - 2) + 27 = 24x - 21

b) 2 4 o 3 |-3
2 -2 6 -15
2 -8 30
2 .1k
£(x) = 2(x + 3)3 - 14(x + 3)2 + 30(x + 3) - 15
T: y = 30(x + 3) - 15 = 30x + 75

c) & -3 2 1 l-lL
4 .19 78 ~311
4 235 218
L .51
£(x) = ¥(x + 4)3 - 51(x + 4)2 + 218(x + 4) - 311
T: y =218(x + 4) -~ 311 = 218x + 561

d) 5 0 -3 2 1 [;é;

5 7 25
5 3 -% § 2
5 5 ﬁiﬁgww 3
15 9
5 =5 3%
5 10
2

£(x) = 5(x - -]é'-)4 + 10(x - %)3 + %(X - %)2 + %(X - %) 1 T%



£)

a)

b)

75

» 1 3 o |3

¥ 13 42 126

25 117 g
¥ 37 )

£(x) = ¥(x - 3)3 4+ 37(x ~3)2 + 117(x - 3) + 126
y = 117(x - 3) + 126 = 117x - 225

T

T

2

2 -3 -10 -k
2 -7 h

2

2(x + 2)3 - 11(x + 2)2 + U(x +2) -4
Wx +2) - 4 =4x+ b

B Y

T
3
3 -8 10 -9
3
3

H
—
"
~r
i

a:
i

-11 21
14

flx) = 3(x + 1) ~ab(x+1)%+22(x+1) -9

2 o -5 o |2 '
2 4 3 6

2 8 19

2 12

£(x) = 2(x - 2)° +12(x - 2)% + 19(x - 2) + 6

1 7 3 v |2
1 -5 -7 -10

1 -3 -13

1 -1

£(x) = (x - 2)% = (x - 2)% = 13(x - 2) - 10

85
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d) 1 -2 1 -1 - %
5 17
1 -3¢ -
1 -3 L2
1 - %
£(x) = (x + 2)3 - %(x 4 %)2 (x + %) - l%
3. a) 1 -7 3 4 LE_ T: y = -13(x-2) - 10 = -13x + 16

1 -5 -7 -10
1 -3 -13
1 -1

b) 1 ~6 6 -1 '_3_ = =3 x-3) - 10 = -3x - 1
1 -3 -3 =10
1 o0 -3 3 .
1 3 ' \'

c) 3 -4 0 0 O Lg__
3 -1 -1 -1 -l
3 2z 1 0 \
3 5 6 =

a) 2 4 .5 9 Lji

. Y = - 2 - = -

2 0 -5 -1 Toa(e) = 30 A
2 4 3
2

86
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e) 2 -3 -12 14 N T y = -12(x-1) + 1 = -12x + 13
2 -1 -13 1 '
2 1 -12 A
2 3

£y 2 -6 6 -1 | 1 T gls) =1
2 -4 2 1
2 -2 0
° ° ,///

c
3-6. Application to Graphing. Pages 110-113.

In previous sections we learned how to find the tangent to a
polynomial graph at any point on the graph. Points of particular
interest are those which we might think of as peaks and valleys of
the curve, that is, relative maximum and relative minimum points.
Since the slope of the tangent line at these points 1s zero, we
are particularly interested in determining all values of x for:
which the slope of the tangent 1s 2zero. This conditlon 1is necesQ
sary but not sufficient to insure a relative maximum or minimum
point. The slope of the tangent may be zero at a point of in-
flection. To 1llustrate, the slope of the tangent of f1 x—)X
is zero at the point P(0, 0); P is a point cf inflection, not
a relative maxi' 1 or minimum polnt.

on the otheér hand, we may have a point of inflection where the
slope of the tangent 1s no% zero. This section suggests one

3

[sec. 3-6]
87



78

mechod of locating such a point; in the expansion of f(x) in
powers of (x.- h), if we set the coefficient of (x - h)2 equal
to zero, we locate a candldate--a possible point of inllectilon.

If the coefficient of (x - h)3 is not zero, all is well, we have
spotted a point of inflection; otherwise, we must look further and
examine the coefficients of higher powers.of (x - h). 1In any
case, an analysis of the expansion of f(x) in powers of (x - h)
will enable us to determine, at a glance, the behavior of the
function near x = h,

The method of Section 3-7 provides us with a simplified
scheme for locating critical points of a function; the method is
a tool or short cut which should not be used prematurely to re-
place the procedure of this sectilon.

Answers to Exercises 3-6. Page 113.
3

f: x—>16 = 6x° + x

a) 3h® - 12h

b) ¥ =9 + 15(x + 1)

¢) If 3h° - 12h =0, h =0 or h = k4,
(0, 16) is relative maximum point,
(4, -16) is relative minimum point,

(2, 0) is point of inflection. (Note that 9—%—3 = 2,
the abscissa, and also lé—%ALQ = 0, the ordinate; the
point of inflection is midway between the maximum and the
minimum. )
a) r£(0) =16, £(2) = o, £(-2) = -16, £(3) = -11,
£(-3) = -65, £(10) = 116, £f(-10) = -1584,
39
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f: x—>16 - 6x2 + x3

f: x-—e-2x3 - 4x -1

a)
b)

c)

6n° - 4
y =1+ 2(x + 1) -
If 6h° - 4 = 0, h='\/—-§—or-v‘—§

(,\/-g, - % 5 - 1) 1s relative minimum point,

(—/-g:, %/% - 1) 1is relative maximum point,
(0, -1) is point of inflection.

£(0) = -1, £(2) = 17, £(-2) = -9, £(3) =

£(-3) = -43, £(10) = 1959, £(-10) = -1961.

89
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£ x—>2x° - 4x -1

3-7. The Slope Function. Pages 114-116.

In this section we develop a general expressioh for the slope
of a tangent to a polynomial graph at any point (h, f(hf). In
the case of a polynomial of nth degree the result is

n-2

n-1 (n-l)an_lh toeee o2y

h
na,

where the ay are the coefficients of the polynomial

\ n-1
£(x) = anxn + a1 X + .0+ ajX + oag.

At this time it would be well to review functional notation.
(See Section 1-1) "The functions £: X—sx2, £: h—>h,
£: t—>t2, ..., all describe exactly the same function, subject
to our agreement that x, h, or t stand for any real number,'
This justifies our calling f!' the slope function assoclated

with £.

990
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Answers to Exerclses 3-7. Pages 116-117.

xl‘L x3
1. higd X-—%T+—?+2
Pi(x) = x° + %
£1(-1) =0
Tangent:

~
<

.a)
b)
c) =2

y

g: x—-—->3x5 - 5x‘3 -2

a) g'(x) = 15x4 - 15%°

g'(-1) = 0
Tangent: y =

b)
c)

-2

. L TR
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6
p: X——3X = 3X

a) p'(x) = 6x° - 3 a)
b) p'(-1) = -9 . ‘: Rewn —»:F‘_J.
¢c) Tangent: .y = -3X '“"“‘ T -+

rea

p: x———+x6 - 3x

2. a) fi1(x) = 6x° + 6x -'lé = 6(x + 2)(x - 1)
(“2; 13)
(1, -14)

b) f£1(x) = 3x° - 12 = 3(x + 2)(x - 2)
(-2, 32) = maximum point
(2, 70) = minimum point

¢) f£r(x) = -6x° + 6x + 12 = -6(x - 2)(x + 1)

maximum point
minimum point

(-1, 0) = minimum point
(2, 27) = maximum point
3, a) 2 -6 6 -1 (1 Inflection point.

2 -4 2 1 This follows since 52 =0
2 -2 0 and by = 2 # 0
2 0 = b2

b) 2 0 -6 6 L}_ Minimum point.
2 2 b 2 (Note, that P(1,1) 4is not
2 0 on the graph.)
2 6=b2

[sec. 3-T7]
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c) 2 -9 12 -4 L}_ Maximum point.
2 7. 5 1
2 -5 0
2 . -3 =b,
a) 2 -3 -12 4. |1 None of these,
2 -1 13 1
2 1 -12 ;
2 3 :
4)
= ot 3 2
£(x) = x' + x° - 2x° - 3x ‘
£1(x) = B3 4 3x° - Ux - 3 = (x2 - 1)(4%x + 3) = n if and only
1f x=-1, -3, +1.

£(-2) =6, r£(0) =0, N _.‘Dd—" -
£(2) = 19, £(-1) =1,
r-P =82, 1) = -a. ‘ (aio
T - I
- - %‘.31 )
1 renNe)|
A .
L\
103 B

Graph of

T x———-—)xu + x3 - 2x° - 3x

[sec. 3-7]
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5. a) £1(x) = 3x° - 6x £(1) = -1 £1(1) = -3
g'(x) = x - 5 g(1) = -1 g'(1) = + 3
b) Te: v+ 1= -3(x - 1) = -3x + 3
T oyt L= Hx - 1)

c) The tangent lines are perpendicular.

3-8. Maximum and Minimum Problems. Pages 117_123

_For the sake of arousing student interest, 1t 1s desirable
that some of these problems be taken up. Since the most difficult
part of the problem may well consist in finding the function to
maximize or minimize, and since no general rule can be given for
doing this, a small number of exercises 1s sufficient for a lesson
assignment.

Tt 1s possible for a function to take on its maximum or
minimum value at an ernid-point of the domain. In this case the
slope function need not be zero. EXercise 4 15 a case in point.
Although the exerclise does not require that the student find the
maximum area, the oupstion might be properly ralsed. We note that
the function has a graph which resembles the figure, wlth a maximum
value at x = 2! where the slope 1is positive, not zero.

The domain is restricted by physical considerations to the interval
[0, 247, that is, 0 < x < 2h,  Fx)

The situation also erises in 45.8*
Ixample 3, where V has a
minimum of the same kind at 30
X = 0.
201*
Graph of total area against 0 10.57 -7 I

circumference of circle. g4 Figure TC 3-8

[sec. 3-8]
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Answers to Exercises 3-8. Pages 123-126.

1. V= (20 - 2x)%x = 4(x> - 20x° + 100x) = £(x).

£1(x) = 4(3x% - BOx + 100) = 0, 1f x =10 or 3. (10

gives a minimum.) For maximum,

10 40 ho 16,000

V=== 73 =%
2

-2, The number to be squared wiil be §N and the other number is
N .

3°

3. Fifty feet parallel to the river; 25 feet on each side.

4., If x 1s the length of the wire to be bent into the circle,
the area is:

592.6+ cubic feet.

il

> > .2

ho. -
A= (B2 4 =36 -3+ Ip+ 77 = £(x)
£x) =-3+%+55=0, if x - 2 x 10.5%.

This will give a combined area for the square and circle of
20.1%, which is a minimum.

If the maximum should be required we should have to
examine the end-points (see the general remarks on this section)
The maximum area is 15.8" and corr-cponds to the case in
which the entire wire is bent into the circle. (Properly
speaking, the wire is not cut.)

X 100 YARDS

I50 YARDS

6. G.I. = N[1.50 - (N - 10).03] = 1.80N - .03N° where N =
nunber of thousands. ‘
1.80 - 06N = 0, if N = 30.

30,000 labels will produce maximum gross income for printer.

95
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10.

11.

'So the point is (1, 2).

The dimensions will be (height x width X length) =
(6 - 2y/3) x (4 y3) x (12 + 4 y¥3)
8 Y: 2
CREIgEOR

The base of the rectangle 1s twice the

value of Xx. Y
(X,16-X3
> X
(x’)
Base

D=¢Y - 2)2 4 (y - 1)° N ,

/Y =4
K = D = - 2y + = f

%6 y + 5 = f(y) i)

fr(y) =¥ -2=0 1if y° = 8, (2,1
y = 2. X

If x represents the number of weeks and P the profit,
then P = (100 + 20x)(5 - E) = 500 + T5x - 5x° = f£(x),

fr(x} = 75 - 10x
£1(x) = Qs> X = 7%.

The answer 1s seven veeks; the eighth week will not add to
his profit. (The number 7%-13 not an answer, since it is not
in our domain.)

V = 2rrex = 27 (100 - xe)k
= 200Tx - orx® = f(x)
f1(x) = 200r - Erxe
filx) = 0&=>x = 10/ Y3
86
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13.

14,

15.

16.

7.

87

10)/?
g

Radius of, inscribed right clrcular cylinder = inches.

Height of inscribed right circular cylinder = 29%[5' inches.

If x represents the number of additional tree plantings,
then the crop

¢ = (30 + x) (%00 - 10x) = 12,000 + 100x - 10x° = £(x),

£f1(x) = 100 - 20x = 0&=>» x = 5,
Total number of trevas per acre is 35.
Girth = distance around package = Ux,

v + 4x = 84
. X
V = x2y = x2(84 - bx) '
2 .3 | b1
=84x“ - Ux° = f£(x). < X
y -
£1(x) = 168x - 12x°

f1(x) = 0&2x =0 or x =14,
Maximum volume of the package is 14" x 14" x 28",
Volume is proportional to cross-sectional area,

2
x = x(35%) = 5x - & = £(x)
f1(x) =5 - x=0&>x=5 and y = 2.5
X) 2

Profit = (3x + 6)(2 - 3) = -x% + bx + 12 = £(x), where x

represents the number of weeks he should wait.

f1(x) = -2x + 4 = 0&=> x = 2, He should ship in 2 weeks,
or July 15. '

£1(x) =8 - 2x = 0&= x = L.
If each side is p/U4, the rectangle is a square.

2 3
Area of rectangle = 2y(4 - x) = 2y(4 - z8) = 8y - XE = £(y).

£ (y) =8 - %ve =0&= ¥y =-J§§.

[sec. 3-8]
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Maximum area = %J'GT at x = 4/3, 2y = %/‘6", N - x = 8/3.
2
2 2 8 -
) )S -

18, D2 =(1 -x)%+ (y°) = (1 - x

3 - 2x + %xg = f(x)

!
f1(x) = -2 + %x =0 &= X = %, y = %VTE.

]
The point (4, $/IF) 1s nearest to (1, 0).
T, 2
30" -
2

19, V = %yg(r + x) = xg)(r + x)
= %(r3 + rPx -rx° - x3) = f(x). T
£f1(x) = %(r2 - 2rx - 3x2) =0 |
&> X = %, h=r+4x= %r. ~—)

20, If we take x as the number of dollars added 50 the rent,
the profit = (80 - ¥)(5" + x) = 4320 + 53x - 53— = £(x),
and f'(x) = 53 - x = 0 <= x = 53.
Since x/2 must be an integer, we use either 52 or 54 as
rent increase, so that the rent is either $112 or $11h
per month. (Again the aaswer obtained is not in our domain,
so the nearest members of the domain have to be checked.
See also Ex. 10.)

3-9. Newton's Method. Pages 126-130.

In Chapter 2 we developed theoretical and practical methods
for finding zeros of polynomial functions. In this section we are
primarily concerned with irrational zeros. It 1s possible to
obtain an approximation to the zero(s) from inspection of the
graph. Horner'!'s method 1s sometimes used to estimate zeros to
any desired degree of accuracy. However, in this text, Newton's
method has been selected for the followlng reasons:

1. Tt is an application of the slope function.

[sec. 3-9]
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2. Horner's method applies only to polynomial equations;
Newton's applies not only to more general types of
algebraic equations but also to transcendental equations.

3, It usually converges to the zero very rapidly.

4, Unlike Horner's method, it is self-correcting, in that
an error made at any stage of the computation wili
automatically be corrected in subsequent stages.

In using Newton'srmethod a good first guess (or approximation
for(tﬁe zero) decreases the number of applications. which are
necessary. We intuitively suspect that the method converges
rapidly for large values of f'(xl), small values of f(xl), and
small curvature, This 1is indeed true. To obtaln a satisfactory
first approximation it 1s often desirable o use straight line
interpolation. (See T.C. Section 2-7.) Thus, if the function
changes sign between two successive 1ntegers ny and n,, Wwe
approximate the zero of the function by X1 the abscissa of the

point where the straight 1ifie” through A(nl, f(n,) )and B(z, f(n2>
crosses the x-axls. (See Figure TC 3-9a.)

 f(x)
B
Xy / x
O n1 A[r‘ n2 A
A

) Figure TC 3-9a
Using straight line interpolation to locate the zero r.

[sec. 3-9]
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It is readily seen that this approximation is too small if the
graph G 1is concave upward throughout the interval [nl, n2],
and too large if the curve is concave downward throughout this
interval,

To i1llustrate the procedure we use straight line interpolation
to approximate that zero of the transcendental function

3

f: x———->2x - 2x° + 3x2 + 12x - 1

which is in the interval [3, 4]. (Note. This exerclse is taken
from Chapter U4, Miscellaneous Exercises,) .

Since f(3) = 16 and f(4) = -17, the function f has a zero
which is between 3 and %, (See Figure TC 3-9b,)
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Figure TC 3-9b
A portion of the graph of x-——)2x - 2x3 + 3x2 + 12x - 1
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q i
By similar triangles —% = %g ~ 0.5, and our first approximation

is 3 + 0.5 = 3.5. We may use straight line interpolation

again (See Figure TC 3-9c) to obtain a,. Thus qy/0.1 ~ 3.3/3.4
~ 0.97 or q, ~ 0.10 and our second straight line approximation
is 3.5 + 0.1 = 3.6, to the nearest one-tenth.

b d

L ————\@&-0n

Figure TC 3-9c¢

A portion of the graph of x——~»2x - 2x3

2

+_3x + 12x - 1

101
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Answers to Exercises 3-9, Page 13l.

1. x2-2=0 x = 1,41
2. f(x) = xS - 12x + 1 =0 X, =0
£(0) =1
£1(x) = 3x° - 12 £1(0) = -12

1 -~
X2—0--:1-2-~O.08

1 0 -12. 1 |0.08

.08 .0064 ., 950488
1 .08 -11.9936 .040512 = £(.08)

3 0o -2 |.os

.2 .0192
3 .24 11,9808 = £1(.08)
3 0.040512 ~ ~

X3 = 0.08 - TIT 9858 ~ 0.08 + 0.003% = 0.083
3. £(x) = x5 - 3x° 4 2 £1(x) = 3x° - 6x

£(2) = -2 .

| try = 2.7
£(3) =2 ) 1

1 -3 0 2 2.7

2.7 -.81 -2,187
1 -0.3 -.81 -0.187 = £(2.7)

3 -6 0 2.7
8.1 5.67

3 2.1 5.67 = £1(2.7)

xp=2.7 - 228 v 27 4 033 ¥ 2.73
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b, f(x) = x° 4+ 3x - 7 £1(x) = 3x2 + 3
£(1) = -3 '
take Xy = 1.4
£(2) =7
1 0 3 7 1.4 £1(1.4) = 3(2.96) = 8.88
1.4 1.96  6.944
1 1.4 4,96 |-o.056 = £(1.4)
Xy = 1.4 - :g;ggé ~ 1.406(3)
1 O 3 - |1.41 £1(1.41) ='8.9643
' 1.41 1.9881 7.033221
1 1.k 4,9881 | .033221 = f(1.41)

3-10. The Graph of Polynomial Functions Near Zeros of Multiplicity
Greater Than One. : Pages 131-135.

This section is important in the sense that it provides an
‘opportunity for a review and extension of Chapter 2 by integrating
ideas and concepts of that chapter with the notion of the slope
function, v

By way of review we recall that if two polynomial functions
f and g have the same zeros, it does not follow that the graph
of f is the same as the graph of g; indeed f(x) is not
necessarily equal to g(x) for all x. For example,

f: X-——9X3 - 3x - 2
I 3 2
g: X—3Xx - 2x° - 3x° + 4x + &

where f has degree 3 while g has degree I, although f has
two zeros, -1 and 2, and g has the same two zeros, -1 and 2.
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Furthermore, we note that each of the equatlons
f(x) = X3 - 3x -2 = (x + 1)2(x -2) =0

l

and g(x) = x' - ox5 - 3x° + bx + 4 = (x + 1)%(x - 2)2 = 0

has the solution set {-1, 2}.

A study of the shape of a graph leads quite naturally to
consideration of the concavity of a curve. In Chapter 3 we make
no formal mention of the direction of concavity of a graph; how-
ever we have included graphs of functions and thelr associated
slope functions to encourage an intuitive approach to the notion.
(See Figures 3-10a and 3-10c)

To facilitate the following discussion, we have reprbduced
Figure 3-10a Irom the Text (page 132).

Example 1. fi x—>(x + 1)2(x - 2). Over what interval. is
the slope of the tangent to the graph of f negative?

Solution. The graph of f!(Figure 3-10a) clearly shows that
f'(x) <0 for -1 < x< 1l. Thus the slope of the graph G is
negative for -1 < x < 1. :

What other information does the graph of the slope function
fv give?

a) Ve note that f!' is steadily decreasing for x < O and
reaches a minimum value f'(0) = -3 at x = 0. In terms of graph
G this means that the slope of G decreases steadily throughout
the interval x < 0. At the point where G crosses the y-axis its
slope has a minimum value, -3. .

b) For all x > O, the graph of f' increases steadily.
Thus, for x > O, the slope of G steadily increases, In other
words, at the point (0, -2) the direction of concavity of G
changes; to the left of (0, -2) G 1is (said to be) concave
downward, to the right of (0, -2) G 1s concave upward, hence
the point (0, -2) 1is a point of inflection of the graph G.

Generalizing, we observe that points of inflection of poly-
nomial graphs may be located by finding values of Xx for which '
the slope function f' has a relative maximum or minimum value.

[sec. 3-10]
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G 1is the graph of f: x—(x + 1)2(x - 2)
Graph of f£!': x—>3(x + 1)(x - 1) is indicated
by the dotted line, o

Figure T.C. 3-10a

There is another important observation which we shall make,
(See Figures 3-6, 3-10a, and 3-10c.) If the graph of a polynomial
function meets the x-axis at points A and B, then at least one
of the tangents to the arc AB of the graph must be parallel to
the x-axls., A proof of this statement is not glven since it 1s
based on the cortinuity of the function and the exlstence of the
slope function throughout the inferval AB, Intuitively, however,
the statement 1s quite reasonable. For'if G does not coincide

[sec. 3-10]
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with the x-axis, then it is above (or below) the x-axis for at
least one, x 1in this interval and reaches a maximum (or minimum)
value at some point in the interval. At such a point the tangent

must be horizontal. (See Figure T.C. 2-10b)
A/\g_, .

/\j T

Figure T.C., 3-10b

The theorem may be restatzd thus: If a and b are zeros
of a polynomial function f, then the related slope function f!
has at least one zero in the interval between x =a and x = b,
This means that the graph of the slope function f!' has a point
in common with the x-axis between points A and B.

For example, the function p:. x———9x3 4 x2 - 2tx 4+ 36 has
zeros -6, 2 and 3; the associated slope function p' has zeros
in the intervals [-6, 2] and [2, 3]. These zeros are
-1 +y73
———g;——— or =3.2 and 2.5, approximately.

Vle observe, however, that -1 is a zero of
fr x—a(x + 1)2(x - 2) and -1 1is also a zero of the slope
function f': x~——33(x + 1)(x - 1)....In the case of f, -1 1s a
zero of multiplicity two; in the cése of £, -1Mis a zero of
multipliclity one,.

Consider also g: x——(x - 1)3(x2 + 1) and the related
slope function g': x—3(x - 1)2(5x2 - 2x + 3). In this case note
that +1 1is a zero of multiplicity three of function g and a
zero of multiplicity two of thq related slope function g!'.

/e may generalize this observation and state, without proof,
that any zero r of multipliclty n . greater than one of the
polynomial function f 1s also a zero of multiplicity: n -1 of

[sec. 3-10]
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the assoclated function f!. This result may be used to assist
in locating zeros of polynomial functions.

Example 2.

To find the zeros of f: x———+12x3 + 28x° + 3x - 18, given
that 1t has a zero of multiplicity greater than one, we examine
the related slope function f': x-——§36x2 + 56x + 3. Since
£1(x) = (2x + 3)(18x + 1), the zeros of f' are -3/2 and -1/18.
But f has a zero r of multiplicity.greater than one, hence
one of the zeros of f!' must also be the required zero r of f.
In other words either (2x + 3)2 or (18x + 1)2 1s a factor of |
f(x) = 10x3 & 28x° .+ 3x - 18. We readily see that f(x) = .. ..
(2x + 3)2(3x - 2). Hence the zeros of f are -3/2 and 2/3.
Graphs of the function f and the related slope function f!
show clearly that the graph of f' crosses the x-axls at the
point where f has the zero -3/2 of multiplicity two. The point
(-3/2, 0) is a relative maximum point of the graph of f. This
may be verified by the expansion of f(x) 1in powers of (x + 3/2):
£(x) = -26(x + 3/2)2 + 12(x + 3/2)°,

Answers to .Exercises 3-10. Page 136.

1. f(x) = x3 - 3x + 2

(x - 1)2(x + 2)

I

a) 2, 1 (of multiplicity two)
b), (1, 0) is relative minimum point AY
(-1, 4) is relative maximum point 1
(0, 2) is point of inflection

c) graph: x———ﬁx3 -3x + 2 1

[sec. 3-10]
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2. Zeros are 2(of multiplicity two) and -1

4

£1(0) = 0 and f£'(2) =0
(0, 4) is relative maximum point
(2, 0) is relative minimum point
graph: x——-—-)x3 - 3x2 + 4

‘x__;axs - 3x2 + U

3. a) £(x) = (x + 1)2(x2 + 1)2 = 5O

I
+2x° + 3% + 1x3 4 3x° + 2x 41
P(-1, 0) is a relative minimur point.
. l ‘
b) f£(x) = x6 - 2x2 4 3x7 - Uxd 4 3x2 ~2x - 1 = (x—1)2(x2+1)2

P(1, 0) is a relative minimum point.

) £(x) = (x - 1)3(x% + 1)
P(1, 0) is a point of inflectlon.
a) £(x) = (x - 1)3(x + 1)(x® + 1)
P(1, 0) is a point of inflection.
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Solutions to Miscellaneous Exercises of Chapter 3. Pages 138-14l,

1. f(x) = 2x° - Tx - 1

Fr(x) = bx - 7

X, = X, + 2, hence f'(xé) = )!(xl +2) -~

£1(x5) = (hxy + 1) - (bxy - 7)

2, f(x) = ax® + bx + 8

f1(x) = 2ax + b
£1(-3) = -6a + b = -1

f(-3) = 9a - 3b + 8 =2
*.a=1, b=5

3. f(x) = ax® + bx + c
£(6) = 36a + 6b + ¢ =0
£f(2) = ha + 2b + ¢ = O
fr(x) = 2ax + b
£1(6) =12a + b =5

a =5/, b= -10

£r(2) = -5

W, £(x) = x° - hx + 3 = £(n) +‘(2h - W) (x - h) + (x - n)°

£(n) + (2n - ") (x - h).
2, and y = 3 + U(x - M) if

Hence linear approximation is ¥y
This becomes y = -1 1if h

h=1,
Error involved is f(x) -y = (x - h)2.
At x = 2.01 error is (2.01L - 2)2 = 0.0001.

2

At x = 1,01 error is (4,01 - ”)2 = 0,0001.
(

If (x - h)° < 0.01, |x - h| < 0.1,

5. £(x) = 5¢2 + (1 - 10n)x + (3 - h + 5n°)
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6. a) Tangen‘t at (O, l) hrg equation y = 1 - 2x,
6.q) | TR 4 l{ -
REEE\\NA
L \
: X
BN
b) Tangent at (0, ) has equation y b,
| 61b) i1
- ‘ L.
\
o / 1\
P\ X
| L\
BENAY
A
[ A
P
7. £(x) = 235 + U5(x + 2) - 17(x + 2)2 + 2(x + 2)°
8. f(x) = a(x - h)2 + b(x - h) + ¢ = ax® + (~2ah + b)x + (ahe-bh+c)
.*. £(1) = a + (-2ah+b) + ah® - bh + ¢ = ah2+ (-2a-b)h + (a+b+c)
Expanding f(x) in powers of (x - 1) we have
£(x) = a(x—l)2 + (2a+b-2ah)(x-1) + ah® + (-2a-b)h + (a+b+¢)
—a(x -1)2 + (2a + b - 2ah}(x - 1) + £(1).
g, f(x) =14 - 3x+ ox?

Tangent at Qh f(h»:
Tangent 1s horizontal if

11

y = £(h) + (¥ - 3)(x - h).
4 - 3 =0,

that 1s at h = 3/h.

0
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11.

12,

b) Area = x(

101

///F’

Biw
N
f =

2 _ 2 ,
£: x——ayx" + a;x + a3, = b2(x - h)“ + bl(x - h) + b,

where b2 = a,.

The nec¢essary condition for a point of inflection is that
b2 = 0,

But b, = a, # 0.

Let f(x) = 2x3 - 5x2 + 3x - 4, then expressing f(x) 1in
powers of (x ~ 3) we have
£(x) = 1% + 27(x - 3) + 13(x - 3)% + 2(x - 3)3

a) Area = x(120 - 3x)
£(x)
£1(x) = 120 - 6x.

If r'(x) =0, x = 20,
120 - 3x = 60,

Area 1is 1200 square feet,

Barn

120x - 3x°

120 - 2x)
==
2

= 60x - £(x)

K/‘
]

£ (x) = 60 - 2x.
Ir £1(x) =0, x = 30, 220 =2X _ 30,

‘Area is 900 square feet, . .
? 111
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13, d =88t -16t°, If d=0, t=0 or 11/2.

£(t) = 68t - 16t° |
£1(t) =88 - 326, If f'(t) =0, t =11/4,

Answer: In 11/4 seconds, it will reach a height of 121 feet.
It will hit the ground in 11/2 seconds.

14, g x—--—-)x2 - 3x + 4
g'(x) =2x - 3, g'(0) = -3
£1(z) = 6x° 4 2x - 3, "0V .3

vhus g'(0) = £1(0).

15, If f£(x) = x| + a7, then f(-a) = al - al = 0, and-
(x + a) 1s a factor.

0

2 .
16. ax;,” + bx1 + c

2 -
ax2 + bx2 +c¢c =0

2 2 A
Thus, a(xl - x,°) + b(xl - X5) =0

or a(x1 + x2) +b =0 for x; #x,.

But f'(x) = 2ax + = =0

~

_=b _ alx, -+ X)) _ X+ X
for x = 'é'a = l}) 2 1 = 2 .
Hence f has a min:mum at x = ! + X2 .
———=

”17. Xy = Xy = Xg, ete.

18, x = 0.35' to two decimals,
2

19. g(x) = ax“ + bx + ¢, g(2) =%+ & +c =3,

g'(x) = 2ax + b = 3x — 2.

Hence a =3/2, b=12, c=-7 and z(x) = 3% +2x - T.
20. f£(x) = x° + 5x + &

£1(x) = 2x + 5 = =f == x = =5; f(-5) =1
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ax® + bx + ¢ = ax® + 4x - 3, a # 0.

3

21. f(x)

0. f£(x) = -3x + x

At (0, O) tangent has equation ¥y = -3x. Graph is
below tangent to left of (0, 0) and above tcngent at
right of (0, 0) for |x| small. Hence (0, 0) is point
of inflection.

§ f(x)
2.-
|!—
- $ } + — X
-2 -l 0 [ 2
AN
1’2‘ :it
23. A = x(%00 - 2x) = £(x)
4 X
£r(x) = 400 - 4x
400-2x

If x = 100, pasture is N0 1. X 100 yd.

o4, Volume = C = yx(mx + b).

I -
hence ¥ = xmx + b)
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25, a) f: x———aax2 + bx + ¢ £(0) =c = 0,
f': x—2ax + b £1(-1) = -2a + b = 0,
RN f(-1) =a -b =1,
] - hence a=<1, b =-2
&) .ﬂ:ii::j:‘ £(x) = -x° - 2x.
(0,0) X :
G201 | NIl Alternative Solution:
Y = B £(x) =1 + 0(x+1) + a(x+l)2,
,Mj ! g a<o

£(0) =l +a=0&>a=-1

b) g: x———+x2 + 2x + 2 1s symmetric to f with respect to
the iine y = 1; the graph of g has a minimum at (-1, 1)
and passes through the point (0, 2).

2

26, f(x) = ax“ + bx + ¢
£(0) =c =0
If fi1(x) =2x+b=0, Xx=5, and b = -ha,
Since f(2) = 4%a - 8a = 3; a==3/4, b=3;
thus £(x) = - 2 x° + 3x.
Alternatively,
£(x) = 3 + a(x - 2)°
£(0) =3 + ka =0
a = -3/4
£(x) = 3 { %(x ) 2)2
27. f£(x) = 4x® 4 3x - 2

y = 3x - 2 1is tangent line at point (0, -2).

Ir 4x° + 3x_- 2 1s replaced by 3x - 2, the error = 12,

If error is to be less than 0.01, 4x? < 0.01, or
|x| < 0.05.

Answer: -8.05 < x < 0.05.
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28, f: x———aax3 + bx2 + ecx + d

f(l) =a+b+c+d= -2

£f(-1) =2 + b -c +d =2
2b +2d=0=>0D0

I
)
o}

-¢ -2 Oor ¢ = ~-a - 2,

2a + 2c = -l=>a
But f(0) = 0. So d =0 and b = 0.
Y

f: x-—---)ax3 - x(a + 2),

£1, x—33a:. - (a + 2), and £'{1) = 3a - (a + 2) = O.

2a =2, a=1, and c = -3.
.So, f: x———ex3 - 3x,
£t x———->3x2 - 3.
£1(0) = -3 and (0,0) 1s a point of inflection.

£(h) = 3n° - 3} .*. slopec at x; =h and X, - -h
£(-n) = 3n® - _ are the same.

29. g(x) = -3(x - 3) + (x -3)°
g'(3) = -3; (3, 0) 1is a point of inflection.
gt(x) =w3x2 - 18x + 24 = 3(x - 2)(x - &)
g'(3 + k) = 3(k + 1)(k - 1), g'(3 - k) = 3(1 - k)(-1 - k),
hence, gt(3 + k) = g'(3 - k) = 3(k° - 1).

(See rfigure on next page.)
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30.

31.

32.

33.

3%,

Figure to Exercise 29. Bigure to Exercise 30.

f: x———)x3 - 3x

g: x—(x - 3)3-— 3(x - 3)
gy x—(x +2)% - 3(x+2) =% + 6x° + 9x + 2

=g(x) = £f(x - 3) ==aph = -3

f 1is symmetric with respect to (0, 0), the point of
inflection, since for every point (x, f(x)) on the graph
there is a corresponding point (-x, -f(x)); that 1is

£(-x) = -f(x).

Similarly, g 1s symmetric with respect to (3, 0), the
point of inflection, since for every point

'(3 +x, g(3+ x)) on the graph of g there is a corre-

sponding point (3 -x, -g(3 + x)); in other words
g(3 - x) = -g(3 + x).

£f(x) = x5 - 6x? + 9x - U

£(x) = -3(x - 1)2 + (x - 1)3 (1, 0) relative maximum
£(x) = -2 - 3(x - 2) + (x - 2)° (2, -2) point of inflection
£(x) = 3(x - 3)2 + (x - 3)3 (3, -4) relative minimum,

A(7), B(8), c(5), D(6).
2) £(x) =0 + 0(x - 2) + (x - 2)2
(2, 0) is minimum point.
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b) £(x) = 0+ 0(x - 2) + o(x - 2)% - (x - 2)°
(2, 0) 1is point of inflection with horizontal tangent.
o) £(x) =0+ 0(x - 2) +0(x - 2)% + 0x - 2)% + (x - 2)"
(2, 0) 1is minimum point.

a) £(x) = (x - 1)%[(x -~ 1) + 3]

i

0+ O(x - 1) + 3(x = 1)2 + (x - 1)3

(1, 0) 1s a relative minimum point.
[(x + 1) - 2]%0(x + 1) + 1]

Also, f(x)
' b+ o(x + 1) - 3(x + 1)% + (x+ )3

(-1, 4) is a relative maximum point.
35. x ~ 0.618.
36, f£(x) = x3 - 3x° +2x - 1

2 6+Y12 _ 3 +Yy3
£1(x) = 3x“.- 6x+ 2 =0 when X=-—p—=_="_"
) 3
For 3 -¥3 we get a relative maximum which 1is below zero,
and this means that there is only one real root, X ~ 2.325.

37. a) No value of k since cublc equaticns will always have
at least one real root. (Imaginary roots must occur in
pairs.)

b) For k> -4 or k< -5.

c) For -5< k< -4,

Solution. |

Fipst find £'(x) = 6x° - 18x +12=0 1f x=1 or x= 2.
£(1) =5+ k and f£(2) =%+ k. (1, f(1{) 1s a relative
maximum. (2, f(2» i1s a prelative minimum. (Continued on

following page.)
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For one real root f(1l) < 0O or f£(2) > 0, that is,
5+k<0 or 4+k>O0. -
For three real roots f(1) >0 and f(2) < 0, that is,

k+5>0 and k + ¥ < 0,
38. £(0) = £(k) = ah® - bh + ¢
39. o %2 + y2 = 25 =mmd x° = 25 - y2

Volume = Tx° * %'= (25 - yz)%F

AN BT L S
AV

riy) =3 -m? =0 1f y =303 ana 2 <503, so,

maximum volume is géggfig .

- 40, Xq = 2.095 1s required approximation.

41, £(x) = 2k + 3x - 5x°
f1(x) =3 - 10x = 0 == x = 0.3
Since f£(.3) =2k+ 3(.3) - 5(.3)2 = 0.3,
k = -0.075.
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42, Difference = X - x2, thus
£f(x) = x - x2,
£r(x) =1 - 2x.
If f'(x) = 0, then x = 1/2.
, Expanding f(x) 4in powers of (x - 1/2), we have

£(x) = 1/% - (x - 1/2)% ~
which clearly shows that we have a maximum at x = 1/2.

43, The point (3, 0) may be determined by inspeétion of the
graph of the circle, and the point (5, 0).
Exercises 43 - 45 are included to show that not all
maximum, minimum problems are solved via the slope function.
For, in the case at hand, 1f the distance from the pbint s
(5, 0) to the circle x° + y2 = 9 is given by D, then
2= (5-x)2+(0-3)2=25-10x+x° +y° = 34 - 10x.

But f: x— 34 - 10x has no critical value. On the interval
- [-3, 31, however, D° has the minimum value 4 at x = 3,

This agrees with our original result.

2
- 6x + 10
g: x—f—axz - 6x + 10 has a minimum value., But

has a maximum value when

by, £ xe—
xE

g'(x) =2x - 6 =0 if and only if x = 3, hence the maximum
value of £ 1is f(3) = 2.

b5, £(x) x° - 6x + 10

£(1) =5, £(4) =2, X
On the interval 1 < x4
the maximumr value is 5 at
the end point (1, 5).

I

™~

b o
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b6, g(x) = 6x° - Ux® + 5% + 2

g(x) » xS 4 5% + 2, |x| near zero,
g(.1) = -4(.001) + 5(.1) + 2 = 2,496,
£(x) = x6 - x4 + 2.5x2 + 2x - 6,

£1(x) = 6x° - 4x3 - 5x + 2.

1

£1(.1) % 2,496, since 6(10)" = .00006 < TEsg-

b7, f£(x) = x5 + 3%x° - Ux - 3
£1(x) = 3%° + 6x - b4

-6 + Y8k _ -6 - Y8k
—% T w®
o

If ft(x) = 0, Xy = 5
Thus, there is a point of inflection at = = ~1..
£1(-1) = -7 and £(-1) = 3. '

Tangent at (-1, 3) is given by y =3 - T(x + i) = U4 - Tx,

48. g(x) = 3xu - 12x3 + 12x2 - U
gt(x) = 12x(x - 1)(x - 2)

Point (0, -4) is a minimum point.
Point (1, -1) is the.relative maximum point,
Point (2, -U4) is a minimum point.

49, £ ox—(x - B;Q(x + 4)3

(x - 3)2[(x - 3) + 7]°

(x - 3)2[(x-3)% + 21(x-3)2 + 147(x-3) + 343]
(x-3)5 + 21 (x-3)" + 147(x-3)3 + 343(x-3)2

£(x)

The point (3, 0) 1is relative minimum point.

N4

(3,0)




50.
51.

52.

Also, f£(x)

Point (-4,

Root 1s 0.200 to three decimals, (%

0)
(-4, 0) is x-axis.

(x+ 13 (x + 1) - 717
(x + 1)3[(x + 1)
(x + 12 - 1h(x + 1 + do(x + 4)3

is a point of inflection; tangent at

- 14(x + b4) + k9]

2 -
£1(x) = 3agx” + 2ayx + &y

At relative maximum or minimum pdint £WM(x) = 0.
+ X -a
_ , > "8
f1(x). = O has roots X, and X, where ~—=—p—= = 555
Expanding f(x) 1in powers of (x-h), we have
£(x) = £(h) + £1(h)(x-h) + (3agh + a2)(x—h)2 + a3(x-h)3.
X, + X -a
2 2 2
If h= 2ty 2= 7, the coefficlent of (x-h)
-a,
3a3h +ay = a +ta, = «a, + a, = 0.
X, + X,

Thus, at x

f(x)!= by +
g(x) = cf(x)
b, = f1(h)
cb, = g'(h)

Hence g!'(h)

b

'—_1?_"' there i1s a point

1

(x - h) + ...+ b (x - 0)"

cbo + ¢cb

eft(h).

1 (

X-h)+...+

Since this 1s true for evexry h;,

-+,
l.

gt (x)

21

(0.2) = o.ooosg)

of inflection.

m
ppm(x - h)

= ef'(x).
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53.

54,

55.

56.

Write £(x) and g(x) as expansions in powers of (x - h)
and proceed as in Exercise 52.

Every polynomial in x can be expressed as a linear com-
bination of xk where k takes on non-negative integral
values.

Since f(x) = 10x + 3x5 + 2x6, the tangent to the graph

at Pl(O, 0) 1s y = 10x. The graph 1.3s below the tangent
at the left of P1 and above the tangent at the right of
P,, for |x| sufflciently small.

Expanding f(x) .in powers of (x + 1) we have

£(x) = -11 + 13(x+1) - 10(x+1 )« 15(x+1)1l—9(X+1)5+2(X+1)§-

Thus, P2(-1, -11) is a point of inflection. The graph
lies above the tangent at the left of P2 and below the
tangent at the right of P2.

3 . 7x2 + 10x + 10

£(x) = xu - 2x
£1(x) = bx° - 6x° - 1bx + 10

£1(5/2) = 0. Expanding £(x) in powers of (x - 5/2),

we have

£f(x) = - %% + g%(x - 5/2)2 + 8(x - 5/2)3 + (x - 5/2)“;
showing that P(5/2, - 15/16) 1s a relative minimum point.

Since f(2) =2, f£(5/2) = -15/16, and f(3) =4, the
function f has zeros in the intervals 2 < x < 5/2 and
5/2 < x < 3.. Moreover, since .f(-3) = 52, £f(-2) = -6,
£f(-1) = -4, f£(0) =10, f also has zeros in the intervals
-3 ¢ x< -2 and -1< x < 0.
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57. f£(x) = X3 - x2 - 3x -+ 1

£r(x) = 3%° - 2x - 3

1l Y1 .
Ir f1(x) =0, x = ——:h——g; hence relative maximum and
minimum points occur at points (~.7, 2.3) and (1.}, -2.4)
approximately. The graph has a point of inflection at

1
L= g.
;;jj N jli.ﬁiu ) L; : ;1@31
,f;i_ ;'t. li“ B HE IR A R i, ]
RNy ‘o ! [ i §
e 4 4D Vo f | [
T j_;%i\\!};z HIH it
g s |
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TR ] e r
o o R ERERE AR R RARE Lyt
o d - ._ii !;1 ,E__.I': !‘0 | ' .
T Yo N i i
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: PE D
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il -H\L |
S VN LA
!l }v | l
ll }l l i

Graph of f: x——-—-—)x3 - x2 - 3x 4+ 1

The smallest root of x3 - x2 -3x+1=0 is"1h the
interval -2 < x < -1, since f£(-2) = -5 and f(-1) = 2.
By Newton's method we obtain the desired root as -1.48,

correct to two decimals.

58. f(x) = x4 - oxd 4 3

£1(x) = 4x3 - 6x° = g(x)

Thus g'(x) = 122° - 12x = 12x(x - 1); g'(x) = 0 if and

only if x =0 or x = 1.

Points (0, 0), (1, -2), and (1/2, -1) are relative
maximum, minimum points, and point of inflection, respectively,
of the graph of g.
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With respect to the function f, the point (0, 3) 1is a
point of inflection, (1, 2)  1is a point of inflection, and
(1.5, 1.3125) is a relative minimum point. This is clear
from £(x) =2 - 2(x = 1) + 2(x - 1)% + (x - 1)* and

£(x) = 1.3125 + 0(x-3/2) + 9/2(x-3/2)2 + b(x- 3/2)3 + (x-3/2)".

59. If f'(x ) = 0, we must use another estimate, since division
by zero is not defined. Geometrically, of course, the tangent
is horizontal and there is no intersection with the x-axis.

60. The related slope function y___%|x| flfggrxx><oé} 1s

defined only for x # O, and hence cannot be used to find
the minimum value since division by O 1is impossible. At
x = 0, the absolute 'value function x—|x| attains a
minimum value of O. |
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Illustrative Test Questions for Chapter 3

The following test iltems are merely suggestive. The order
of the questions is based upon the order in which the material
tested appears in the text; questions 13 - 16 require more
working time than 1 - 12,

For a full period test (40 to 50 minutes) a selection of
items should be made, Thus, for example, a full period test might
consist of questions 2, 3a, 5, 12, 13.

1. Find the equation of the tangent T to the graph G of
g: X—2 + 3x + x5 at its point P of intersection with the
y-axis, Near P does the graph lie above T, Dbelow T, or
does 1t cross over T2

2, If it 1s desired that near P(0, 2) the graph of
f1 x——2 + Tx - 2x° lle between the straight lines

¥y =2+ 7.000x and ¥y = 2 + 6,999x, what values may x

— assume?

3. For each of the following, draw the tangent to the graph at
_1ts point of intersection with the y-axis and sketch the
shape of the grap:.. in the vicinity of this point.

a) x—33 - 2x + %3

b) x—3 + 2x = %2

4, Write the expansion of g(x) in powers of x - h and determine
the equation of the tangent to the graph of g at (h, g(h» .

3

a) g: x—>2x° - 6x° + 1

b) g: x&-—exu - x°
5. Given f: x~—3 - Ux + x3 xu. Expand f(x) 1in powers of
(x + 2).
6. Find the equation of the tangent to the graph of
x—>32 + 5x - x° + x5 at (2, 16).

7. Find the slope of the tangent to the graph of

xf__9x3 + px2 + gx + s at the point where x = t.
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8. Characterize each c—iiizal point of the function
f: x———;zf - uxa.

9., Find an equation of che tangent to “he mrary of
. o]

-3x + 6
at 7=s point of inf- -~ -- ..
1¢;. Charezcterize the pc .-~ L, 0) on the g==sh of x—(x RS
as a relative mai_=u_ nt, relative minimum point, point

of inflection, or nc: ¢. these. Sketch the graph and 1lts
tangent near the po:int (1, 0).
Given the polynomia-
f1 x——agy + B ..+ a2x2 t e + o2
find the associated si.pe function.
12. Divide 30 into two par s such that the sum of the squares
of these parts is a minimum.
13. Find and identify the character of each critical point of

™

[N

I'4
-

f: x—(x + 2) (’ - 2).
14, TFind correct to two decimals the real root of x5 + 9 = 0.
- 15, >Find correct to two declmals tne positive zero of
o ‘ £1 x—x° + 3x° - 6x - 3.
16. Show that there are exactly two points on the graph of the
function f: x—3%° - 4 that are at a minimum distance
from the point (0, -2).




Answers to Illuszratfvr 't Czes®ions for Chapter 3

1. Tangent: y = 2 + 2=
Graph G 1lles below T . . liz 5t P(0, 2) and above
T at the right of P,

2. |2x| < 0.001 or |x| < 0.C" 5.

3 a) b)
| &Y !
yl

~N 4 /|

0N -

[4

Y
T |0 T2 1 {0 >
=

...... ﬁ:mMé)”mé(xjwQm(éﬁs;éhéliff;(éh2_igh\(x-g)!h(65;5)(x_h)2h+ ey’
?: oy = (2n® - 6n% + 1) + [6K° - 12h)(x - h)
b) g(x) = (h*-n2)+ (#n3_2h) (x-n) + (6h%-1) (x-n)Z + hn(x-h)
y
+ (x = h)
Ty = (hu - h2) + (4n3 - =« - h) |
£(x) = -13 + 40(x + 2) - 30(x — = - + 9(x + 2)% = (x + 2)"
3

X—32 + 5x - x° + x3 = 16 + 12(x - 2) + 5(x - 2)2 + (x - 2)

‘T oy =16 + 13(x -~ 2) at (2, 16).

3

7. f£(x) = x° + px2 + gx + 8

3x2 + 2px + q

£1(t) = 3t% + 2pt + q = m.

£1(x)
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8. Point (0, 0) is point of inflection.
Point (3, -27) I3 minimum point.

9. f(x) = xS - 3x + 6
£r{x) = 3x° - 3 = 3(x + 1)(x - 1)

Point of inflectian at ;l_%_l =0

y = -3x + 6 1s tamgent line at (0, 6).
10. Point (1; 0) is a point of inflection; the x-axls 1is tangent

line. ) I
&

2 2
11, £(x) = ag + ayx + 2% + agx” + et anxn

0
£ ‘ 3a,%° A1
P X—pay + 2a X + 3a3x + ... + na,

12. S =x2 + (30 - x)% = 2x% - 60x + 900 = £(..)

£1(x) = 4x - 60; If f'(x) =0, x =15,
Numbers are 15, 15.

13, £(x) = (x + 2)%(x - 2) = x> + 2x° - Ux - 8

Pr{x) = 3x° + bx - 4 = (x + 2)(3x - 2)
(-2, 0) is relative maximum point;

(%, -9%%) is relative minimum point.

14, -1.55

15. 1.67

16, If distance = D, then D° = x° + (fz -4 - (-2))2
f: x—-—}x2 + (x2 - 2)2 = x' - 3x° 4+ 1

£1(x) = bxS - 6x = 2x(2x° - 3)
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Critical poinzs a~ x =0, x=+y 3/
The expansion of (x) in powers of (x - .~/ 3/2 },

f(x) = -Z; + 6(x —‘; )2 - l&/—g(x _E)B - (X'-y[%)u;

shows that f has a r=iative minimum valune at = =y 3/2 .
Similarly,

f(x) = 77I + 6(x +Yk;§)2 - l&)/—g(x +)/_%-)3 + (x +

shows that f has a relative minimum value at x = -y 3/2
also. In each case the distance 1s a minimum, that is,

D=-]§')/_7.
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Spe=ial Qué stions

The fol..wlng ¢ ==tizns involve some of she 1deas of the
precading cha-ters 1.1 = =rvel or challenging -7ay. They should not
be cunsiderec an esoenticzl. part of the comrse, but they may glve
some amusemer- and 2fded “=sight to able sZu<ents.

6]

{

3

2

1. “how that x° + .. .z -z factor of
f(x)=xu-‘-: —3x° + X+ 2
7y showing that =i} =0 and f(-1)= 0.
p. Tor what values =f & will f: x—xX - 3Xx + k have a

—ero of multipli:zity two?
3. TFind the solution se- of thz equation

|x|3 - 2|x|2 - 5lx| + 6 = 0.

4. If the function f: x—>y 1is completely specified by the
table, and if g 1s ar Inverse of f, state the domain of
fg and the domain of gf. Are fg and. gf the same
function?

x | 1| =
vy | 2] 3 |¢®
5. a) Sketch a gmaph of g: — U + |x2 - l+|

b) What is t&= slope of tk=- graph 2z x =0, x =1, x =3,
X = 29 '

¢) What 1s === minimum valze of

[8)

The symbol [¥] 1s used to Zenots th= Zreatest integer not
exceedirz x. thaxr is, [x] 1s a1 Zmteger and x - 1 < [x]

__<_ xX. s, .:l = 7T] =2, and {-——] = [-1T] = -4,

a) Skeve). tim zr=Ths of ¥y = [x! and y = [-x] for
—= < X< 2

b) ¥%men does =] = ~[xX]?

¢) Using this —ometion, £ind =xpressians for the least
“nteger Wizt x doex not -exceed &=xd the greatest
integer Wwhich X exce=ds.

130



121

+) Whot is the slope function associatzZ with the function
f: x—[x] for non-integral x > 1°
T. If the coefficients ai are real numbers, now many roots
has qglxl2 + a |x! + a5 = 02

Answers to Special Qusstiozns

1. f(i) =1 -1 -3~1+2=0
f(-1) =1 +1 -3 -1+2=0

2. f£'(x) = 3%x° - 3 = 3(x - 1)(x + 1) and wz= only possiblie zeros
of f of multiplzcity two are therefore 1 and <1, 1In the
former case, f(l1' =1 -3+ k=0 and k =2; 1in the
latter case, k = -2.

3. The given equation implies |x| = -2, 1 or 3. The first
alternative is not possible for any x; whe secont znd
third yield the solution set ({1, -1, 3, -3}.

4. Domain of fg = domain of g = (2. 3, 4].
Domain of gf = domain of f = {1. 2, 3}. These functions
are not the same because they hav= different domains.

5. a) LAy

_‘F*A

T
\
51(q) |

b) The slope is 0 s = =10, -2at x =1, 6 at x = 3;
and no slope 1is defim=d at x = 2.
c) 4.
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6. a)
i ,
2
1 L
| :
P 1
e |7 |° 2 !
-2 |7l |° !
v} i
¥ |
2 - !:
y=ix [
e "xL

b) When x 1s an integer.
c) -[-x]; -[-x] -1.
d) f': x—0,

7. Four or fewer. For example,

if (ag, a;, ao) = (1~ =3, 2), —cotz =e =L, =i
(1, -1, 0), Q, +i;
(1, 1, -2), +1;
(1, 1, 0), 0;
(1, 2, 1), no =.:5=.




Chapter 4
EXPONENTIAL AND LOGARITHMIC FUNCTIONS

Introduction

The purpose of this chapter is to study the properties of
the exponential functions f: x—> a¥(a > 0) and their inverses,
the logarithmic functions.

It is assumed that the student is familiar with the laws of
exponents, in particular with

S r_s
ar+ —

|
[\
)

and

(ar)s = ars
where r and S are rational numbers. Nevertheless, these
matters are reviewed in the first two sections in connection with
a concrete problem -- the growth of a colony of bacteria. In
Section 4-3, a* is given a meaning when x 1s irrational. An
alternate approach to exponential functions is given in an
Appendix. (See Section #-15). This alternative introduces and
solves the functional equation f(x + ¥y) = £(x)f(y). We believe
that this development will be very illuminating for superior
students. :

It is shown in Section U4-l4 that we can write an arbitrary
number a as a power of 2 and that it is therefore sufficient
to treat the single exponential function x —> 2%,

Preparatory to the treatment of tangents to the graph of
x—> 2%, 1t is made plausible (Section 4-5) that the graph is
concave upward everywhere. A strict proof would require an argu-
ment from continuity.

We are now ready to apply the "wedge" method of Chapter 3.
As in the case of polynomial graphs, it 1s convenient to begin
with the point on the y-axis. We do not prove rigorously that
the wedges can be made arbitrarily narrow. However, in the text
and exercises, they are chosen sufficientiy narrow to make it
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plausible that there 18 a unique linear approximation to the
graph at (0,1) with a slope k ~ 0.693 and that therefore

X %14 kx for |x| small.

At this stage 1t 1s expedlent to take leave of the base 2
and adopt the base e for which the linear approximation 18 as
simple as possible, namely, e* X 1 + x for |x| small. The
slope of the graph at (0,1) 1s then 1. More generally the
slope of the graph of f: x—e* at (h,eh) 18 the ordinate of

the point. That 1s, the slope functlion f!' 1s ldentical with f.

The base e 18 easily seen to be 21/k ~ 2.718.

The applications discussed in 4-8 are of three types: to
radioactive decay, to compound interest, and to cooling. It 1s
expected that at least the flrst type wlll be included in view of
the current interest in radioactivity. It has the advantage that
only powers of 2 need to be involved. ;

We prepare for the introduction of logarithmic functibns by
continuing (see Section 4-9) the discussion of inverse functions
begun in Section 1-6. It may be desirable to review the earlier
material at this time. We belleve that the logarithmic functions
take on added meaning in the setting of the general principles
which govern inversion.

After discussing logarithms and change of base, methods are
given for computing e* and 1n x. In this text, we have made
no use of infinlte processes. Accordingly, we avold the language
of infinite series. Instead we approximate e for |x| small
by substituting x 1n an appropriate polynomial. Similarly, we
use polynomials to estimate 1ln x for' x near l. These matters
" are treated in general terms without attempting to prove every
statement. There are, however, further discussiuns in the Appen-
dices (Sections 4-16, 4-17 and 4-18).

The final brief section (4-13) cn the history of logarithms
and some of the included references may, if desired, be used as
the basls of an asslgned paper.
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4-1. Introduction. Pages 145-14g,

It may be appropriate at this point to review the basic
meanings of rational exponents and work a few exercises of the
following kind:

l. PFind a simpler name for

a) 23.2° b) 2%//52 c) 22.23 a) 43/2

e) y-3/2 £) g2/3 g) g-2/3 h) (-8)'2/3
2. Find a simpler name for

a) a™a® b)) oS ¢) (sM)

a) a™" e) (ab)" £) @

g) 'What restrictions do we have on a, b, m, n? We avoid
values that yleld a zero denominator or an expression of

“the form Oo .

In the special case of bacteria, the principle of growth
shows that the number N of bacteria doubles in a fixed time
period, not necessarily in a day. Actually, the number present
2k hours after a count of N, 1s made might be 3 Ny, 5Ny, «..,

or more generally a-No. In such a case the number present at the
~end of 48 hours, or 2 days, is a-(a-No) = a2NO; hence; at the
end of n days, the number present N(n) 1is an-No. This 1s the
basis for the formula used in the solution of Exercise 7  1in this

section.

Answers to Exercises 4.1, Pages 149-150.

1. 1f 29.2F = 20+F _ 2T then

2O+r of '

=%£— = 1; and since from (1)
r r
2 2 :
O+r
2r = 20,‘20 must be defined to be 1.
2

[sec. L4-1]
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2, If 272" = 20 = 1, then by divesion, 27T = i; » Since
2t £ o.
I€
3, Let N(n) = 106(2n)
14
12
n N(n) in millions ; [
0 1 9
1 2 N(n) 8
21 4 4n millions 5
3 8
L 16 4
6 2
4, N(n) = 10°(2") so that
. 6, n 5 o | 2 3 4 5 n
N(n +5) _10(2") = _ g
N(n + 2) 106(2n+2)
N(n + oM7) 4y
5 Nn -3 = 21n—35 = =

6. If N = N(n + 100) = 10°(2199), then

6,,100 ‘
_%_= E&Lj%___l = 106(298) = N(98). Thus, after 98 days
2

there were '% presens.

7. N(n) = Ny-a"
200,000 = N(n + 3) = No(an+3)‘
and 9
1,600,000 = N(n +2) = Ny(a% * 2)
Thus
N(n-+-%) é%
T3 =° = 8, and a = 4;
hence
N(n) = Ny(+7), N(3) = Nogh3) = 200,000, and Nj = 200,000(4~3).
[sec. b4-1]
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The formula for N(n) becomes

N(n) = 200,000:47°3

"

(a) If n =5, N(5) = 200,000+4>"3 = 3,200,000

(b) If n = 3/2, N(3/2) = 200,000+4(3/2)=3

"

— 200,000-4~3/2 _ 200,000+1/8
= 25,000,
(¢c) If N(n) = 800,000, then eoo,ooo-u“’3 = 800,000

and 4073 - yt, Therefore, n - 3 =1 and n = U,

“3.p., Rational Powers of Positive Real Numbers. Pages 150-156.

The basic principle of the law of growth may be extended to
the general case. If the number of bacterla present at the end
of one day is a-No, then the number present at the end of t

days 1s at-No. The multiplying factor at does not depend upon

the time when the initlal count No is made. This principle is
i1ilustrated in Exercise 7 in Section 4-1, since

N(n + 942) _ 1,600,000 _ 8
N{n + ¢ T 206,666

N(n +3) _ 200,000 _ g
N(n + 3/2) -~ 25,000 .

and

Exercises 4-2a are introduced as an application of the basic
1aws of exponents (3) and (4). It is expected that this will
constitute a minimum review; however, the ti.e required for this
work will necessarily vary from class to class. Since the develop-
ment which follows does not demand extensive manipulative skills,
it is possible to provide for review work, if necessary, while
continuing with the discussion of the text.

It might be well for the student to obtain some rational
powers of 2 before resorting to Table 4-2, In this way he will

[sec. U4-2]
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develop an intuitive notion of the increasing nature ofnéhe func-

tion f: x—->2x, and the table will be more meaningful to him.

The rational powers of 2 that are most readily computed are
2.5’ 2.25’ 2.75’ 2.125’ 2.625 2.875

’ ’

which are obtained by taking successive square roots of 2 and
appropriate products. Thus, 2'75 = 2'5-2'25. This could have
been obtained, also, by finding the square root of + 8. Thus,

'23/u = 81/u. If these values are obtained and listed in order,

we get approximately,

r 2r

0.000 1.000
.125 1.091
«250 1.189

.375 1.296
« 500 1l.414
- .625 1.542
. 750 1.682
.875 1.834

1.000 2.000

Intermediate values of 2% may be obtained by linear inter-
polation within a very small error. Thus, using the familiar
interpolation technique, we get from this table

2°2 = 1.150 instead of 1.149,

2-8

1.742 instead of 1.741.

It might be helpful and a time-~saver to have a class-chart
of the table of values of 2T as given on page 235.

The treatment of exponential functions is introduced via
the use of 2 as the base, that 1is x—>2%. For thls redson we
feel that appropriate significant experiences with a table of
powers of 2 can be used as an intuiltive basis for the study of
x——>2x,lfor Xx real. Thus, it becomes plaus;ble that there are

138
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numbers which might be used to fill in the gaps 1n the table.

In point of fact, the student should be led to observe that every
positive real number r could be written as an entry in the table,
that 1s, as a power of 2. In this way, the use of the table leads
to the discussion of Section 4-3.

The computation involved in Exercises L_2b can be simplified
by devices such as rounding the entries to 2 or 3 decimal-
place accuracy, and rationalizing the denomlnator (See Example 2).
The objective of the section is not realized if straight-line
interpolation is used to obtain entries not in the table; it is
intended that the laws of exponents (3) and () should be the
basis for the method uscd.

Answers to Exercises 4-za. Page 153.

1. a) If both m and n are positive integers, am.a” =

m
de8®ees*d °* A*8%eee*8 = A°8°%°eees®a = a+n

m factors n factors m 4+ n factors

If m 0

O, then we know that a

aO,an - l’an - an - aO+n - am+n.

= 1. Hence,

gMe gl
A similar argument holds if n = 0. Thus, the rule
is established for m, n =0, 1, 2, «c. &

b) Now suppose n < 0, m > O. Then

m.
am-a = am-—%-ﬁ=3-_—n- .
a a

(1) If m > -n, let m=-n+k where K =0, 1, 2, eeus »

Then
m ~-n+k -n, .k
a_n = a_n =2 _ﬁ from (2)
a a a
- ak - am+n, g0 gMegl = gMtn

for this case.

[sec. 4-2]
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¢ -n (m need not be 0), then let

(2) If m
m + k = -n. Where k = l, 2, 3, ee e o Hence
oM _ .m _ aM ) 1 _ a'k _ gon
g~ n am+k am-ak ak
Once again amea = am+n, completing all the
possibilities.

20 a) SUPPOSe m, n = O, l, 2, 3, LI ] .

n n
If m=0, then (a%) = (ao) =1"=1=a°
A
4m“n- m 0 o Oem mn
If n=0, then (a) =(a) =1l=a =a =a .

n
Now suppose m £ O, n £ O. Then (a™) means that a"

is used as a factor n times:

n
m m _m m
(7)) =a«a * ... *a .

\ 7

N

'n factors of am

But a™ itself is the product when a 18 taken as a

factor m times, a" = aca* ...°2. Replacing "a""
———————

m chtﬁﬁé n
by 1ts expanded form, "a-a- ves ca" in (&™)  we see
that a 1is used as a factor mn times so that

(am)n = a"l,
n

We have established the rule (a™) = a™ for m,
n=0, 1, 2, 3, «¢es¢ + In fact, if m or n =0,
the other need not be restricted to the non-negative
integers. The proof goes through for this more general
case,
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b) Now suppose m = =1, =2, see; D=1, 2, 3, oeee o

n n

1 1 1 1
Then (am) = m———— L e § e g g g O emmmm—
- N a-m a-m a-ml
n factors
= l = l = l = amn
(a™)B ~ a(-mn = g
c) Now Suppose, m = l, 2, see n= -l, "2, "'3, L)

Then (am)n = 1 i ___1 _ m
(")~ an(-n) g

d) Finally, suppose m = =1, =2, .eej N = -1, =2, ceo o

n n
Then (™) = "%ﬁ) = 11 = = ___j%;____
EEME
1 1 mn
= 1 = 1 = a .
Jm)

n
This completes the proof that (a") = a™ for integral
values of m and n,

-2/3 1 1
3. 1000(8 ) = 1000- = 1000°*=5 = 250
g2/3 22

wlow

3322 30 = 38)° - 35 -
no (72)(87) = (2)72(2%) 2 %2t - 2

-4/3 -4/3
2 = (2™

(2"2/9)9 = 272

_ oH/3

141
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Since x—»2° 1s an increasing function as x 1increases,
in order of decreasing value from the left we have

22,' 2u/s 22/3 -2

s, 275, 2=3 op

2

(272/9)°, 273,

’
’ 10 10
5, 227 _ 22.0°T _ h-27/10 = 4 V2T = 4. "N/128

2
6. a) If 8% =(23), then 8" =82 and m= 2.

-y
w528y, (&0, 2/

2
b) 1t 8" =203, then 2%™ 229 and m = 3.

5 5 m:

7. a) If 2(4 ) - 16™, then 2(4 ). (2h) = 2hm and 42 = im

so that m = ¥t 256,
5
b) If (2”) = 16™, then 220 _ 2hm and 20 = 4m, so that

m=50 .

g 2hs g2 A, ohoT  gh(y |, H2b)

¢ 2 - 2 - 2

Answers to Exercises 4-2b. ' Page 156.

1. a) 2% _ 21425 | 5.5°25 ¥ 5(1,189) = 2.378

b) 25/h =2+/V/2 X2 V1,418 ¥ 2(1.189) = 2.378

115 _ 2e2035 % 2(1.110) = 2.220

2. a) 2
p) 22:65 _ 22,2°65 % 4(1.569) = 6.276
) 20°98 _ 2:55.5:03 % (1,1464)(1.021) % 1.k495

22

«5(1.189)(1.021) X ,607

[sec. 4-2]
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3. a) 8-8’4 = (23)08”‘ = 22.52 - 22.2-5.2-02
~ L(1.414)(1.014) R 5.735
-0.63 ;
b) 0_25-0.63 _ (2-2) - 21.26 - 21_2.25,2.01
~ 2(1.189)(1.007) ~ 2.395.
4,

r I’2
=4.0 .0625
-3.6 -0825
-3.2 .109 N
-2.8 J14Y4
-2.4 .18z
"'2.0 .250
-1.6 .33C
-1.2 JU3=

1.4 2,639

1.8 3.482

2.2 4,595

2.6 6.063

3.0 8.000

4.3. Arbitrary Real Exponents. Pages 157-162.

In this section we are faced with the problem of filling in
values of o* for irrational values of x. The condition or
requ;rement that x—>2% be an increasing function, comes to our
rescue. With its ald f: r——>2r, defined for all rational numbers
r, can be ‘extended in a unique way tc a function f: x—> 2%
defined for all real numbers x. The illustrative example chosen,

2”[5_, might have been 2™ or any irrational power of 2. The
"pinching down" process makes use, in a concrete sense, of the
notion of nested intervals in order to give meaning to 2x, b <
irrational. The development is presented at an intuitive level.

[sec, 4-3]
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Exepcises involving the use of the graph of f: x——>2x are
. provided to give the student some acquaintance with the special
characteristics of f. He should note that the domain of f is
the set of all real numbers and the range, the set of all positiwve:
real numbers; furthermore, f 1increases steadily for all x. The
graph shows clearly that f 1is a one-to-one function.

Answers tc Exercises 4-3, Page 163,
2. A comparison should reveal a diffsrence of not more than 0.2.

V'3 2.:21"73'2

3. a) 2 3.3
p) 2™ x 231 x 8.8
c) Q'W/u xz*19 % .6

~

k., No, there is mo real number x smch that 2% = 0. We give
two arguments to support this statement. The second 1is very
neat, but more sophisticated.

a2) There 1s no such real number x > O since f: x—> 25
g 0

is an increasing function and 2° =1 8o that f(x) > 1
for x > O. :
If x <0 we set t = -Xx; hence, oX =-3% e Since
2
there is no number 2% such that lg = 0, there 18 no
2

real number X such that 2x = O,

b) If x 1s a real number such that o¥ - 0, and if y is
any real number whatever, then ¥ - X 1s a real number,
oYX is therefore defined, and we have

2¥-X,0% = 29 %.0 a0,
but
pV=Xeo* = oY

2

14 .'fi

[sec. 4-3]
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therefore
2y =0
for every real number Y. But 21 = 2, 80 this 1s
impossible.
5. a) If 2¥ =6, xR 2.6 a) 1f 28 =3, xR 1.6
p) If X = .4, x X -1.3 e) Ifr 2° =2.7, x X 1.4
¢) 1f 2% = 3.8, x ¥ 1.9

4.4, Powers of the Base a as Powers of _g: Pages 163-166.
In this section we bridge the gap between the study of
x—>2% and x—»a* for any base a > O. Using the basic prop-

erties of f: x—+>2x, we proceed to show how any real positive
number might be considered as ean -entry in the table of powers of
2, or as the ordinate of a point on the graph of f.

The illustrative examples have been gelected and arranged.
according to difficulty; the laws of exponents (3) and () egiven
in Section 4-2 provide the basis for the methed used in the
solution.

The graph in Figure 4-3¢c should be used in conjunction with
Table 4-2 to check answers to Exercises 4.2, The graph muy be
used in lieu of the table, although the results will not be as
accurate, ‘

Answers to Exercises 4.4, Page 166.
1. We fipst write 3.4 = 2(1.7). In order to express 1.7 as a
power of 2 We may,

a) use the graph and read 01T % 1.7,

b) interpolate in Table 4o petween the entries 1.68179 and
1.74110, obtaining x = .77,

¢) if we do not objJect to the calculation involved, divide
1.7 by 1.682 (since entry 1.68179 ~ 1.682) obtaining
1.7 ® (1.682)(1.0107). Using the table again we note

| [sec. b-l]
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that

2°01 < 31,0107 < 2°92;

hence 1.7 ~ (2'75)(2'02) =277,
Getting back to the given exercise we may now express
3.4 = 2(1.7) as 21(2'77) = ot 7T (approximately). We should
note that the graph gives a satisfactory approximation.
2. We write 2.64% = 2%(1.32); then, since
240 vy 3p
2.64 X 21(2.40) _ pl.bo_

Thus, (2.64)°°3 % (21.40)0.3 _ p0.k2 (eo.ho)(eo.oe).

From Table 4-2, we have

oot ) 20.’"’ 0002 ~

~ 1.320, 2 ~ 1.01k; .
. ) ~

hence (2.64)0+3 & (2°9°)(2°°92)x (1.32)(1.014) ¥ 1.3k,
Alternatively, the graph of x —> 2% may be used twice:

)
first to see that 2.64 X 2 " then to find

| (21-%)0:3 _ 0.2
Using the graph, we obtain the resul:
20-42 vy 3
3. We first write 6.276 = 4(1.569). The Table or graph gives
e 1.569 & 20-65
so that
6.276 = 22(1.569) % 22(20-05) _ 52:65,
Then

(6.276)-0.6 ~ (22c65)-0.6 - 2-_1.59
- o2+ bl 2-2(2.h1)

~ $(1.33) % o.33.
Alternatively, to use the graph we round

6.276 X 6.28 and read off 22:65 ~ g 08,

[sec. U4-4]
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Then since S
(6.28)-006 x (22065)-006 = 2-1.59 x é-lo6,
we refer to the graph again and read off

2716 % 0,35,
The result is :atisfactory, and quickly obtained.

Since 5.2 = 4(1.3) and 1.3 = 2'38

5.2 22(2.38) - 22.38

Thus,
(5.2)2.6 ~ (22,38)2.6 _ 06.188 o 26(20.19).
But
' 2019 ~ 1.1,
hence
25¢20-19) m 25(1.1%) = 72.96.
We have '

(5.2)2+6 2 73,
Prove that if 0 ¢ a ¢l and v > u, then a’ <‘au.'

Proof: Let b =1/a. Then b > 1 and b’ > bY,

Vi, u
if v > u. Dividing by b'b7,

L

1
=23

b

b
1\ ¥ 1\Vv
4> (3

v

and finally at > a’.

147
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4-5. A Property of the Graph of x—>2%. Pages 167-169.

The proof in this section (but not the result) may be
omitted if you are pressed for time. The topic is, hoWever, of
considerable importance in modern mathématics. In more advanced
courses, the function x-—»2° and its graph are said to be convex -
(meaning, convex downward), We have adopted the more familiar
expréssion "concave upward".

The theorem on the relation of arithmetic and geometric means
is an interesting and important one. In Exercises % and *5, we

‘have suggested a proof of the extension of the theorem to three
and four numbers. This beautiful proof, due to Cauchy, 1s not
for everyone. ' o

peplrt

Anéhéﬁshig Exercises 4-5., Pages 169-170.

1. Given P(.05, 2°92) and q(.25, 2°2°)
Point M has coordinates (.15, 1.1122), approximately, since

£(2°9° + 2°%) T 1(1.03526 + 1.18921) X 1.11223.
Point R has coordinates

(415, 2°19) % (.15, 1.1096).
The ordinate of M 1is greater than the ordinate of R, that
is 1.1122 > 1.1096.

2. Ml_'has coordinates (.10, 1.072%) since
%(1.03526 + 1.10957) % l.072k2.
The corresponding point on G has“coordinates

*10y % (.10, 1.0718).

149
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M, has coordinates (.20, 1.1493), since

2
%(1.10957 + 1.18921) ~ 1.14939.

The corresponding point on G has coordinates -
(.20, 2°29) X (.20, 1.1487).
Thus, three points of G which are below the chord PQ are

(.15’ 2.'\1.5)’ (.10’ 2.10)’ .20).

and (.20, 2
Sketch is similar to that of Figure 4-5b. |

Given

.10)

P(.05, 4°9°) = (.05, 2

and |
a(.25, 4°22) = (.25, 2°°).
Point M has coordinates
ol 5
(.15, 5 —%F27) % (.15, 1.2430).
The corresponding point R on G has coordinates
R(.15, 4°13) = (.15, 2°3) % (.15, 1.23114),
Point M; has coordinates (.10, 1.15145), approximately,
since
£(1.07177 + 1.23114) X 1.151455.
The corresponding point on G has coordinates
(.10, 410 = (.10, 2°2) % (.1, 1.14870).
Point M, has coordinates (.20, 1.32267), approximately,
since
Z(1.23114 + 1.b1k21) ¥ 1.322675.

The corresponding point on G has coordinates

(.20, 4'2) = (.2, 2'“3 ~ (.2, 1.31951).
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Three points of G which are below the chord FPQ are
. .10 o2
(.15, 412y, (.10, 4°19y, (20, 4°20y,
5. From (1) we have

5 2, /Y, = 5 2./Y3°Vy
Also,

1 (Y1 *tV¥p Y3tV
2 < 2 T2 2 [\/V:L'Vz «/Vs'yu]

Ty, +yp +yg+vy) 2 f[yl.yz-yyyu

L

or

*6, We set —%(yl + Vo + y3) =Ty and substitute 1n the result
obtalned in Exerclse 5,‘thus,

1 1 '
(¥, + vy + ¥3) + g5(¥y + Vo +¥3)

> 3 YVpeV3 - \?ﬁ%(yl + ¥, +Y3)
or
Sy, + ¥, +73) 2 Y V1-YpeVg - J Ay, + Y5 +V3) .

Dividing by the second factor on the right glves

3 1
Vi + Vo + ¥
( L2 3 S (yl-yz-y3)-¢

and therefore

%(yl + Vo + y3) 2 ,\3/7103"203"3 .

4.6 and L4-7. Tangent Lines to Exponential Graphs. Pages 170-179.
In these sections, a tangent line is treated in the spirit of
Chapter 3 as the best llnear approximation to the graph at a
] boint. Since our develbpment rests upon the use of 2 as base,
we begin with the graph of f: x—»2* and, as in Chapter 3, with

the point (0, £(0)) = (0,1). 159
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We show that above an interval [-«b,b] of the x-axis, the
graph is confined to a wedge formed by two intersecting straight
lines. The proof makes use of the concavity of the graph
(Section 4-5), the fact that 2™ = ii', and operations with in-
equalities whlch should be familiar. The results for b = .01l and
.001 make it nlausible that the best linear approximation exists
and that its equation is y = 1 + kx where k ~ 0,693, Since k
plays an important role in the following development, it is well
to emphasize its importance.

The choice of e = 21/k'

for |x| small,

as a base rests upon the fact that

(2M/Ryx | X/ kE) =1 +x,
so that e ~ 1 + x. It follows that for a large positive integer
- n
n, el/n ~ 1 +'% and e ~ (1 +~%) o« This corresponds to the

n
conventional definition e = lim (1 +-%) which uses a language
n-roo

different from that of this text. We believe that our treatment
is an intultively suggestive one. '

Answers to Exercises 4-6a., Page 173.
1. We are to show at which steps in the proof on pages 171-172,
it 1is necessary to assume that

(a) mx # -1, (b) mx £0, and (c) mx £ 1.
We are also to show that none of these possibilities can occur. .

(2) In the step
1 1

2x > 1l +mx °?

we must assume that mx # -1, in order to avoid division
by O. This assumption is Justified from the fact that

o* <l+mx for O x < b.
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If mx = -1, then we would have 2% < 0, which we kmow
1s false, since 2 S 0 for all x. Therefore mx = -1
cannot occur.

(b) In the step 1 - mex® < 1, we must assume that mx £ O

in order to avoid the statement 1 ¢ 1., The fact that
mx cannot be O follows from the fact that

o* <1 + mx, O0¢Cx<b.

If mx = 0, then we would have o* <le But for x > O,
we lmow that 2% > 1. Hence, mx = O cannot occur.

(c) In the step

27 >—r7 i'xfé)flmf)mx)‘ >

we must assume that mx ¥ 1 in order to avoid division
by 0. To show that mx ¥ 1, we need the given restric-
tion that 0< x<b <¢l., If mx =1, then y =14+ mx =2,
But ¥y = 2 1s the ordinate of a point on the graph of

g:}r—>2x ’
and hence
= 2
at this point. This implies that x = 1, which contra-
dicts the given fact that +« ¢ 1. Therefore, mx =1
cannot occur.

2. If m 1is the slope of L, (the line Eﬁ); we are required to
prove that' G 1lies above L, for 0 < x < b; that is, that
2¥ 5 1 +Mx for O < X < b;
This is equivalent to the statement that
o™X 5y 1 -mx for -b < x < O,
Now,

27X =l ana 2¥ ¢ 14T -b<x<O.
>

(The first statement is a definition; the second statement
follows from the fact that G, the graph of g: x—>2%, 1s
concave upward,) 152
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Hence,
2-x = 1 """—"1-.-:..—-
oX 1 4+ mx
Then - -
p=X 1-(1 - mx)__ 1 - mx
Since

1 —'ﬁ2x2‘< 1 (because mx > 0),

2% 5 1 - mx,
which is the required conclusion. Therefore, G 1lies above
L2 for 0 ¢ x < b. '

204001 ~ 1 0006934  ana  2-9+001 % 5.9993071.

The slope of L1 is

2O.OOl -1

0.001 ~
the slope of L2 is

0.6934, and

—0.00l
1l -2 ~
0,001~ 0.6929

Since for |x| < 0.001, the graph of x—»2° 1lies in the
reglon between lines IL; and L2, the slope k of the

tangent to G at P(0, 1) satisfies the inequality
0.6929 ¢ k < 0.6934,

Using b = 0.01 we have

30«01l _ 5002 » 1 51396
and
y-0.01 _ 5-0.02 N 0.98623;
hence the slope of Ll is
0.02
BT R 1.396
and the slope of L2 is
-0.02
L= ST 1.377.
153

[seﬁ; 4.6]



14y

Using b = 0.001 gives the slope of Ll as

30.001 '3 _ 3,001388 - 1
0.001 "V 0.001

and the slope of L2 as

= 1.388

l - 4-0.001= l _.2-00002 ~ l - 0.998615
0.001 0.001 ~ 0.001

The slope of the tangent to x—>4° at the point P(0, 1)
is between 1.385 and 1.388. It is 2k.

6. Since 3 ~ o159 (see Example U4 in Section 4-3)

X (1.10957)(1.00626) % 1.1165
2-.159 =.(2-015) (2"0009)

~ (0.90125)(0.99378) X 0.8956.
Thus the slope of the tangent to the graph of x—>3* at
P(0, 1) 1s between 1.044% and 1.165.

Answers to Exercises 4-6b. _Page 178.
X

1. The graphs of f: x—>e
unique point. See graph.

and g: Xx—>-Xx 1intersect in a
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The graphs of f: x—» ¢

f(X) =

%5 ~ =55

Exercilse 1

and g: x—>~X

e" +x and f'(x) = e

= =0.55.

"
H
I

£(-=.55)
f'('-55)

_0.027
1.577

1.5770,
-0.567

22 22 22
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or

X

+ 1

0.5770 ~ 0.55 = 0.027

-0.57.
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Since e70:57 _ (=0:55)(=0-02)

~ (0.577)(0.9802) ¥ 0.5655,
£(~0.57) = -.0045 and f£'(-0.57)=1.5655.

~ l" ~ -
Thus Xy % ~0.57 +-3j%%§g-~ ~0.57 + 0.003 = -0,567

The required root is -0,57 correct to two declmals.

Answers to Exercises 4-7. Pages 179-180.

1. a) m=et X 0.7679 d) m=1
b) m = e0'2 X 1.6487 e) m=er"d % u.4817
¢) m= e 7 X 2.0138

2. See Figure 4-6b.

3. a) ¥ = e"l(x,+ 1) + et - e‘l(x + 2)
b) ¥ = e0'5(x - .5) + 0> = e0'5(x + .5)
c) ¥y = e0'7(x - .7) + 07 =~e0'7(x + +3)
d) y=x+1
e) ¥y = el's(x - 1.5) + e = el+9(x - .5)
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k.
Ay
~{3.49 _ | K3{a)_+
\\ ol 4'/
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T T
L1 N~
1‘ -
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419

Exercise 4
c) Point (-3,4) ‘
-d) The slope of L, 1s -% .
e) Point (-r,s) on L, corresponds to point (r,s)

on Ll' The slope of L2 is -m.

1567
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[sec. 4-7]

the slope of corresponding line drawn in 5(b).

Each point has coordinates
The slope of each line drawn in 6(a)

c)

b)

Aruitoxt provided by Eic:
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7. a) See Figure 4-6b for the graph:of f: x—>e”,

The graph of g: x—>e~* may be obtained by reflecting
the graph of f 1in the y-axis.

b) ' Slope of graph;gf_f_ Slope_gf graph of g
at x =0 1 =1
at x = +1 e ™ 2,72 | -2 X -0.37
at x = -1 < % 0.37 ~e X -2.72
¢) At x =h the slope of the graph of g : x—f>e’x is
¥ = .g(x).

*8, g's x—>-e

Answers to Exercises 4-8a. Pages 183-184, o
1. We use the formula W(x) = w(o)2"‘/T. Then %%} - o~X/T

so that %;l-_- 2 3'55 =272 -3 and after 7.7 days

we would expect 1/4 of the sample to remain. Note that
we could have observed that after every 3.85 days we have
1/2 1left. Hence, after 2(3.85) days we would expect
(1/2)(1/2) = 1/% 1left.

30,8

1
Similarly Wio = Py = 55g -
2. In this problem we seek w g = 2—x/T when T = 26.8,
1 1
x = 13.4 and x = 80.4%, or x/T ='§%f§'= 3
and 3 '
X/T ='g%:§'= 3.
Therefore . '
‘ w(1l3.4) _ 2—1/2 1 _vig ~ 707
W(O - = ~/§-— 5 e .

W(80.4 -3 1 1
—T‘(JTG-)—_L=2 =—é-3——:.-8'= .125¢

[sec. 4-8]
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3. We know W(x)

1}

W(O)Q'X/T where leg.e =-§% , and we seek T.

Hence
'1&6 - p~l2e2/T o=k _ p-12.2/T
Hencé, '
‘-12.2 12.2

The half-1life is 3.05 minutes (approximately).
b, oOnce again we use
W(x)
We are given that when

1l
=
—
(@]
~
no

Therefore,

o-1/T %‘g = 0.98.
From Table 4-2 we read
2-'03 ~ 0.98;
hence
27l/T % 57403 ang -1 % _.o3
so that
RS S
=3x |
Thus W(x) = 2(2100) gives the number of milligrams after x

years.
ﬁﬁ’alternative”solution can be based on the fact that
X ¥ 1 + kx when |x| 4s near O:

2'1/T ~ 1+ k@w%) =1 -1% ~ 0.98; hence T < %L ~ 34,6

2
5. W(x) _ ,-x/T
wio; =2

4
W(3.36°107) __3
w(o)  ~F = °®

"3- 36.1014
T

[sec. 4-8]
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Therefore, . 3 36-10”

Hence i

and

6. W(x -x/T
—w{ﬁ}”

W(3,000 ‘ 277m = goo
| JW(’OT')'=_m_=‘277"‘2
Hence 3,000
s, T x-7§%7-x 3.614 = 21,807

n pl.pe85 - 51485

’

and
3,000 1,85, T =.§i%g%_x 1,620 years.
Hence

wEx; _ o~x/1,620
w(o 5 W(0)

0.p~810/1,620

2 milligrams

W(810) = = 2.27%7

=22 = J3 X 1.b,
Thus, l.4t milligrams (approximately) will remain after 81
decades.

KA

Ansvers to Exercises 4-8b, Page 186.

1. We use the formula A = peT¥., Then

A = lOOO'e('OB)lB = 1600 e.54.
Using Table #-6 and interpolating we write
e*5* m 1,7160.

182
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Thus "
A = 1000 e*2"' % 1000(1.7164) % 1716;
the amount is $1,716 (approximately).

a) A = P, Since the amount A = 2P, and r = .03,

.03t 003t 693

we have 2P = Pee and = 2. Using 2~ e* 77,

e003t x 0693

we have e so thet t ~ 23.1.

The time required is 23 years (approximately).

b) .Using r = 0,06, we have

- 006t

OP = Pse and e*00t

693

=2xe'
Thus t ~ 11.5; the required time is 12 years.
(approximately).

n/100, we have
Pent/lOO

c) Using r

]

oP = ent/lOO ~ e.693;

hence

and

" ~ 69.3 |
n

Answers to Exercises 4-8c. Pages 188-189.

1.

2

3e

Sirce P = 180 and Py = 760, 180 = 7606‘0-11u45h,

and
e-o.lluuh =;180

o-x 0.237. From Table 4-6 we see that

g

- l 4 ~ ~o
0.237 ¥ e~1*%5; hence -0.1144h X -1,45, and h X 12.7.
Thus the height is about 12.7 kilometers.

Q\= %‘= Qoe-0.12n S0 that %___‘: e-0.12n. Since 0.5 x e"0069,
-0.12n N -0.60 and n ~ 5%-. The requilred time 1s about 5%
days.

W(x) = T(x) - B; hence W(0) = 100 - 20 = 80,

90 - 20 = 70, and W(x) = 30 - 20 = 10.

163
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80 e™2C.
since: 42 = 0.875 X e=0+13  _5c % -0.13 and c X 0.026,

Using the formula W(x) = W(0)e™®* we have 70

so that W(x) ~ 80e"0'26x'

But W(x) = 10 = 80e

e .

Hence -0.26x ~ -2.08 and X ~ T.7. The time required is
about 7.7 minutes,

-5k 2 . -5k
Y., 1(5) = Iye E . 5Iys SO that e ok _

wlmo
[ ]

2
I{10) = Ioe'lok = Io(e'5k) =14/9 1, .

Hence, 10 feet below the surface the intensity 1s EI .

9™ 0

[As an alternative method, we note that

2 _ l%i} _ (5 + 5; _ 1(10)

3~ 1(0) " I{0+5) " I(5) °
"It follows that

2 - 2 2,2
1(5) = 31, and I(lO) ='§I(5) = 05) Iy -

If I(x) ='%{0, %‘= e, From above, e~k =-% N e-O.ho,
so that k ~ 0.08. Thus e=0-08x o 0.5 x ¢~0-70 and

~ 8.75; hence at depth of about 8% feet the intensity ié

ol =

IO.

{
Answers to Exercises 4-9. Pages 194-196.

1., a) x—>
°) x—3 g

c) Jc-—a-g/x + 2

[sec. 4-9]
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24 8.) x ='x—-£—i b) x =y_§8- . c) X = -\/3 y+ .2
3. Suppose the digits are x and ¥, and we pick x. Then

we define:

o ” fl: X —>5x
f2: X—>»X + 7
f3: X—>»2X
fh: X~—>»X + ¥

f5: X—>»x = 14

fsfhfsfzfl’ X—>2(5x + 7) +y - 14 = 10x + v,
a number with tens digit x and units digit vy.
4, A function which has an inverse.
5. If x4 4 X5» then elther x, < x,, in which case f(xl) > £(x,),
or :y > X,, in which case f(xl) < f(x2). In either case,
~y & Xy Ampldes  £(x)) # f(x,); hence f 1s one-to-one
and has an inverse by Corollary 4-2.1.

6 a) f(l) = 1 = £(-1) suffices to

x f(x)
show that f 18 not one~to-
one and therefore does not ]
have an inverse. \ : 1
\ AR
\ /
. O e 0 L] %

f1x —» x

[sec, 4-9]
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-1 [ ]
b) £,77: x—> /% f (x)
/
N
[
-4 -x-5 - O a
c) f2'1: X—»./ =X 4 L l
£, (x)
2
\
\
i ~
T\
. 0‘:' [ 4Li
7. a) f£(l) = v/ 3 = £(-1) suffices |~
to show that f 18 not one- )
to=~one and therefore does 5
not have an inverse. : /,1— N
~ 2 -10[ 1 2 ~
169 £1x ——safb - x°

[sec., 4-9]
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b) For example, f.: x—> VU4 - x2, 0<x<LK2,

l' —
and , '
£st x—>«/4—x2, -2<x g0,

2

- 8. f: x— x° - hx, x> 2, and £yt X—> x° = hx, =x.< 2.

9. All x—> x> - 3x, with domains {x: x < -1}, (x: =1 < x < 1),

and {x: x> 1].

10. If £ has an inverse, no iline parallel to the x~aXis may meet
the graph of f in more than one point. This implies, for a
cublc, that it cannot have a maximum and a minimum. Hence the
slope function f!' has only one real zero (graph of f has
a point of inflection with horizontal tangent) or none.

4.10. Logarithms. Pages 196-203.
If f 1is defined by f£: x—> 2% we have, in particular,
3

f: 3—2° or f: 3—> 8. Thus, under f, 3 1is assoclated

with 8. Under f£~% then 8 is associated with 3, or =L,

8 —>2, . In general, I"'lz 2¥ —5x. This form is neither con-
venient nor in conformity with our way of writing a function. We

prefer to write I"lz Xx—>y and represent ¥y 1in some manner in

terms of x. We get around this by using a naw symbol, log,, for

=1 so that we may now write f'l: x—>log,x. Thus 10328 = 3

is simply another way of Writing 23 = 8. More generally, for

any positive real numbers, a, b and ¢,

logac = be=> ab = C.

These two equivalent forms express the same relation among a, b,
and c. For example, to find logu8 we may set logu8 = X,

write 4% o Be=> 22X _ 3

nojw

, and obtain x =
167
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On the other hand if we use the notation exp and log for the

~ functions f and £7*, respectively, then exp, : x—> a* and
N loga: x——a—logax. Furthermore, since exp and 1log are inverse

functions
eXPa(logaX) = x and loga(expax) = X.

That 1s,
log_x
a & - x and logaax = X.

Although the exp notation is not used in the text, 1t may be
introduced at the discretion of the teacher.

Answers to Exercises 4-10. Pages 204-205.
1. log,l0 = loge(5-2) = log,5 + log,2 ~ 1.609 + 0.693 = 2.302

2. log, 5/% X log, 1.2214 + log,1.0202 + log,1.003

~ 0.20 4 0.02 + 0,003 = 0.223

3. logeh = loge22

= 2 log,2 ~ 1.386
b, a) log5 = 1oge(u)(5/u) = log 4 + log,5/4 X 1.386 + 0.223 =

1.609
b) the results are the same.

5. log,3 loge2.7183 + log,1.0513 + loge1.0408 + loge1.008

~

~ 1.0 + 0.05 + 0.04 + 0.008 = 1.098

6. 10g,0.25 = log 2™ = -2 log,2 = -1.386

1

log, 045 = 1oge2‘ = =log,2 = -0,693

loge2/3 = log,2 - log 3 = 0,693 - 1.098 = -0.405‘
loge5/3 = log, 5 = log,3 = 1.609 - 1.098 = 0.511

log,2.5 = log. 5 =~ log 2 = 1.609 - 0.693 = 0.916 !

1og€§ = log 3 + log,2 = 1.098 + 0.693 = 1.791

[sec. 4-10]
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1oge8 3

1oge2

]
w
-
(o]
09
(0]

o
]

2.079

o)
1oge3“ 2.196

]
o
-
o]
0
(]

w
I

log,9

~Q, - 32 = W eox = 5/2
m

10. d-a® = a¥™ = (a%) = 8"

11. 1oga(x~%)

It
=)
@]
3]
—
i

0. For any real number x > O,

1 1y, 1y _
1oga(x~§) log,x + 1ogaQ§), since log.X + 1oga(x) = 0,
1y _
1oga(§) = -log,x for x > O,

12. For any real numbers X, > 0, X3 > o,
1 (f-l-) log_(x )(-1-—) = log X, + 1o (—1—-)
oga_x2 = L0BgXy x5! T Ba*1 - 8a X,

= log X, - log Xy, from Exercise 1ll.

13. If f: x—»a%, £(1) =a, £ Y(a) =1. In other words
1ogaa = 1.

14, a) 10¥ = 35 a) logyp5° = X, so that 10° = 25.
b) 2* =25 e) 1oge(6)(7) = X, So that e* = ho.
' c) e =4 £) 1oge251/2 - log.2 = 1og5/2 = X;
so that ‘ eX = 2.5.

15. logyy5 = log,,10 ~ logy2 ~ 1 ~ 0.3010 = 0.6990
1og16(1/2) = log gl - logyq2 N 0 - 03010 = =~ 0.3010
log, o (52) = log,5° - log, 2% = 2 1logyp5 - 2 logyp2 R 0.7960
1oglo(l%§) = T logy2 = 108y45 N 2.1070 ~ 0.6990 = 1.4080
16. a) log1255 =-%

-

[sec. u4-10]
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b) log, ,0.01 = -2

c) 1032781 ==

d) logy (0008 = %

e) log, g2 =-%

17 logg(x + 9)(x) = loéé 36, hence x° + 9x = 36.

x° + 9x - 36 =0e>x =3 or x = ~12.

The only root of the given equation is 3. -

L-11. Special Bases for Logarithms. Pages 205-206.
Some attention might well be devoted to the function

X —> logex.

The graph may be readily obtained from that of x—>2%(Figure
4-3c), since these graphs are symmetric with respect to the line
Y = X. If the graph of Xx—>1ln x 1s then sketched (or traced)
oh the same coordinate system, an exa@;pation of the graphs for
various values of x clearly shows thaf

log,x
ln x = logex or 1915—= i-2;—=
logee 082

It is desirable that the student gain some measure of confidence
in dealing with logarithmic functions involving different bases.

Answers to Exercises 4-~1l. Pages 207-209.

1. a) 2P = 26 <> p = 103226.
b) logx = 5<=e’ = x X 148,41
c) logS(Sl/u) = 1/h

179
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d) log, (8 x 16) = log227 a7 1

2. 8) Inl4 =2 1n2=2r
fn.);ln6=1n2+ln3=='r,+s
c) 1n%=-31n2=—3r
d) In10=1r+t |
e) Iln25=in5=-ln2=t -1

£) 1n-g-=1n2-21n3=r-2s

g) 1n-3»/3_=1n5-21n3+%1n3=t—%8

h) 1n 8 ¥/100 = 3 1In 2 +% (In 2 + 1n 5)

= 3r +-§- (r + t) =%‘-(11r + 2%)
3. a) 10g,41000 = 3
b) 1og6.010.001 - x «= (0.01)% = (1078)X = 103 == x = 1.5
¢) logy(dy) = logg(3™) = -
d) 1ogu(32) = xe=> 4 = pPapx = 2.5

e) 1og10(0.0001)_ = =4 since 10‘1‘ = 0.0001

-X _ 21&

f) 1080.516 = x4=>(%)x = 2 <==> X = -li'

g) 1n e = 3
1

h) 1nJ/e€ =% since e? = NA

1) loggy27 = x <= (34)x I ='—131'
1
J) log, V32 =xe=2"= (25)5@;: =-g

1n 3 . 1.0086 ~ o 4
b a) logygd =1ndp NEigE 0T
171
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5

Te

8.

ln e ~ 1 ~
logype =1, 10 ~ 5.3026 ~ 0-43%

In 10 ~ 2,3026 ~
1og4l0 =-7,-3 ”'if%§86‘” 2.096

In 100 = 1n 10° = 2 1n 10 ~ 4.605

In 30 =1n 3 + 1n 10 ~ 3.401
In 300 = In 3 +2 1n 10 ~ 5,704

In 0.3 = 1n 3 + 1n 10”1 % 1.0986 + (~2.3026) % - 1.20%

In 0.003 = 1n 3 + 1n 10~3 % 1.0986 + (=3)(2.3026) ~ ~5.809

545 =x<=>x = 10

logl'o(-}i—;—)% = loglo%‘f%= logyp3e=x + 1 = 3(x - 1)
X
and x = 2

(1o8,5) (10g,7) = log, 5e=>x = 7

1 d) ed = x2e—x = 24e°
% e) e=3

a=e 2
e - £) e"2=2x-1<z>x=e2‘*'1:,14'92

2e
10 2 10. Hence, (gln 1@) 10810° = 1019810° = .

1@ log,ne _ o = oI 10 logloe = el
==>1n 10 logloe N I

1

For all real x > O,

For all real x > 0 where x ¥ 1.

2 /2

1ogx’ex = 2e==x° = 2Xe=bx = o*

Roots are 2, 4, obtained by trial or by graphing ¥ = x
a.nd y = 2):/2. .
174
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9, If f: x—>1%, f(c) = £(d) where ¢ #d, and f has no
inverse.
10. (1n x)2 = 1n x°e=> (1n x)2 -21nx=1nx(Inx - 2) =
i xec0esx=1; Inx-2=0e=>x=e".
Solution set = [1,e2}
11. 2N = N(1.0M)¥ =2 = (1.04)%

12. 2N

lo ~ 0.30103 ~
x = IB%“E‘ﬁﬁ 0.01703 ~ L7-7-
Time required is 18 years, -approximately.

4 .
oN = N(1.0075)° <=>x =‘ET£§§%%6075
~ 0.30103 ~ o

Time required is about 23 years.
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Note: Although a table of common 1ogarithms was used to ob-
tain the solution, a table of natural logarithms would

have served as well.
= N(1 +-ﬂ%5)u(1°) or 2 = (1 + 0.0025x) 1O

log(l + 0.0025x) = %823 Oggglos

~0
hence 1 + 0.0025x ~ 1.0175 and X ~ 7.
Rate is 7%, approximately.

.007526 ,

13. N(x) = No-ax where x 1s time in hours.
6 = 1-a3/2, so that 1n a =-% 1n 6.
50 = a* (where N(x) = 50 ten thousand) and

1n 50 _ 3 1n 50 ~ 3(3.91202
X ="95"2a 2 1In % ~ 2(1.7917

~ 3.28 (hours)
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15.
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16.
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Graph of

1.

1ls
Its slope at

(0,1)

x—>1ln X has no slope at x = 0.

is

at

X

Slope of graph of X—>e

17.

(1,0)
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4-12. Computation of e* and 1n x. Pages 210-216.

This section introduces the important idea of approximating
the value f(x) of a non-polynomial function f, by substituting
values of x 1n an appropriate polynomial whose values effectively
“peplace f(x) for the purpose of the calculation. In particular, ...
" wWe replace e by one of the set of polynomials

1l +x
2
X
1+x+-§—1-
x2 x

l+x+"—2'i'+ -a-+—r'1"T -

The advantage of this procedure is that the values of these
polynomials are easy to find. The use of graphs and a few sample
calculations demonstrate the effectiveness of the procedure.

There remain two questions: (1) How are the polynomials dis-
covered? (2) How accurate are the approximations? These ques-
tions are not answered in Section 4.12, but are discussed in the
hppendix (Section 4-16).

For a further discussion of the computatiun of 1ln x see
the Appendix (Section 4-18).

Answers to Exercises 4-12. Page 2L16.
- - 2 3
1. If x = 0.1, e°'1~1+o.1+.L-.é_L+.(._éi}

=

~ 1.1052
If x = 0.5, €22 % 14 o.5+-§—'-g)-2 +1—‘§5—%—%
~ 1l.65
If x = -.1,""-"e"1 ~ 1 - 0.1 +—§lé—l-)-2 + (—'—‘5—1—}3
~  0.9048
[sec. U4-12]
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2 3
If x = -.2, e™?X 1- .24 (’ég) + (’égr)
~ 0.8187
2. 1=1.0 X 0.00138889
1=1,0
= 0.5 ~ 0,00019841
~ 0.16666667 0.00002480

~ 0.,04166667 ~ 0.00000276

Pafwagr gw
P4
[
S T -
el

~ 0.00833333 ~ 0.00000028

%
o
2

Sum = 2.71828181

3. The line y = x-1 1s symmetric to y = x+1 with respect to
the line y = x.

2 3
b oln 1.2 % (L2 -3) - {22217 (1.2 - 1)

~

12:%9§- X 0.18

~

From the graph 1n 1.2 <~ ¢.18. Similarly 1n 1.3 & 0,26,
5. 1n 1.21 = 1n(1.1)% = 2 1n 1.1 % 0.19062

Answers to Miscellaneous Exercises. Pages 220-224,
1. Given: N = Ae" -

' a) If n=0, N = A.

2A = Re"==>2=¢" and n=1ln2=xk
b) Ratio = e, hence increase = e-l and per cent increase =
100(e-1) ~ 172 per cent.
2. fix — ca® ) : -
£(0) = c = 2; £{(1.5) = 2 3.3/2 = 5le—>a =9
17

[sec. 4-12]
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3, fix—»a

and

5
P oy
(M)
-

il

V1)
N

{t
Hw

[V}

u
ol

n n 1
-l Pp 2 \P2
8
5. r’ =1 +-§(r—l) e—>n = 208 [1 ""E(r'l)],
log r
1
6. a) 1nx3=1@>x=e§
1 2
b) 1nx2-21nx—g=ln%i—-=lnx=lm>x=e
7. If a0‘3=x, 0.3 logxa=l and»logxa=-1§9.

8. a) 1n (%)(J.oo)(-%é) =1n 5
») 1n _ﬁﬁ_{‘;_= 1n(x¥/2y5712)
| /72 :

9. The graphs of f:x—-—)--ex and gﬁx——»e"x are symmetric with
respect to the origin. ’

10. a) £(3%) = £(9) = 2°
b) e(2®) =) =3
11. a) f£(x) + g(x) = 2(2%) = o*
) £(x)eg(x) = 22X - 275X
) (2% +27%)2 - (2% - 272 = u(2F)(27F) =

12. 1032(6:: + 5)(x) = 2 = log, ye=>6x> + 5% = b

]
]

+1

-2

The only solution is ':EL since x > C.

179
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13.

2x+2 | g(2%) + 2 = (2%%)(22) - 9(2*) + 2 = O.

b(2*)% . g(2*) + 2 =0

2

|1

. Thus, if y-.=2x, uy2-9Y+2= (uy-l)(y-E) =

1k,

15.

and y = %- or y = 2.
The required solutions are -2, and 1.
p2X+2 | o2 3 _ 4(2%)% L u(2*) 23 =0

If y = 2%, hyz + b4y « 3= {2y -1)(2y43) =0 and y = %

y--%.

The only solution is -1; since y = 2% we exclude Yy = %
Xk X - h P

In 257 = In 6 <=> 2 = 6<+>x = -2

But the domain of f:x~—>1ln x 1is the set of positive real

numbers, hence 1n (x-4%) and 1n (x+l) are undefined for

16.

17.

18.

x=-2c

1og c ’ ‘ 1ogad
1ogbc = 1og b and 1ogcd = TBE;E_

hence 10 1o
(Log_b)(lo c)(log d) = (log b) ga Ea” = log_d
8a &v = log, b log c ) = 080 -
1n ( ) =1=1n e > X _

14+x 1+e

a) y=1n |x| b) ¥y = |1n x| c) y=1ne

139
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18. a)

Y]
J.?
]

N

>
N

b)
Ny | e b
\
\ EEEN
\ |
I //
\\ . y;..g ni|
N\ £ | 4]
N 1]
0 2 , ~4- - §
ERENENER
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) . %

1
o
!
T
'
TN
T
'
)
o
i
[}
{
T
H

19. & = 100 €3(0+05) _ 100 €2+25 % 100 (1.28%0) = 128.%0.
Amount = $128, approximately

20. 100 = P €3(0:05) _ p ¢0:25 === p _ 100 ¢~0+25
P ~ 100(0.7788) = 77.88
Answer = $78, approximately

)lO

21, 200 = 100(1 + 1%5)10 —== 2 = (1 + 0.01x)*°.

291 _ 1 4 0.01 x <= x = 100(2°*1-1) % 100(1.0718 ~1)
Rate is 7.18% or T7.2%, approximately.

132
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22. N(x) = Ny ekx, for N(x) in thousands.
25 = NO , Where 1950 1is time at x = O.
30 = 25 e5k<:z._6_=é5k
3
N(x) = 25 e2K = 25(e7)3 = 25 og) =-—%§ - 43.2
Expected population in 1965 1s 43,200 or 43,000,
approximately.

e"'t/RC = e"'l/Otl - e—lO = (e-5)2 x (000067)2

ﬂ23. a) f(t)

~ 449 x 1070
b) -P-{_g = =12 X 10 -6 = —1, hence
48 x 25 x 10

£(t) = e”t X 0.3679

ok, 1n A = 7% ==> t = -RC In A

-3

a) t=-10""1nl=0

b) t = ~(25 x 103) (6.0 x 10””) 1n 0.5 = -15 1n 0.5

t % (~15){~0.7) = 10.5
- 25, f(x) = e* - x3 + 3x »
i {x) = ¥ -3x° + 3 ] .
Since £(~0.3) X 0.7408 + 0.027 - 0.9 = =0,1322

(A
~
(A
~

0.8187 + 0.008 ~ 0.6 0.2267 .

£(
and £(=0.2)
0

£f(x) = has a root between— 0.3 and =~0,2
Let X, = =0.3, Then since f'(-0.3) ~ 3.4708,

- -0 22 ~
x2 ~0.3 ~ _g:%.?aé"\l -00262.

Since f(-0.26) X 0.0086 and f'(-0.26) < 3.57,

000086 ~ -
3.57 ~

The required root 1is ~0.26 correct to two decimals.

N =0.26 - 0.26 ~ 0.0024 = -0.262,

X3

183
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Graph
three
three
four, four
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185
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4,000
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3,200
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2,800

2,400

2,000

1,600
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27. a) See graph b) y = 14x° c) See graph
]
y
\ - . ;
e +le
\ 2 ]
\ N/
/
\ o 14
\ | L . S R
. 1\ P N
AR [1s
* w Llde 2 ‘ ’ A
\v T J 7
0 5 i A
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28. a) See graph

177
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¢c) Scores between 200 and 300: 2%
Scores between 300 and .400: 14 7%
Scores between U400 and 500: 34 %
Scores between 500 and 600: 3% %
Scores between 600 and 700: 14 %
Scores 700 and 800: 2 %

between
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3.

Illustrative Test Questions,

Simplify

a) etPX b) 1n(eX)
for x an arbltrary positive real number.

If Ina=3 and 1nb =2, find

a) 1n ab d) ~%§—%—

b) lnasln b e) 1n a?

¢) ind £) (in a)?
Solve the following equations for x.

a) x19820 _ 5 c) 3in X .3
b) log7x3 =3 d) 2 1n &¥ =—:2L

Express each of the following as an exponential equation and
solve for x. ‘

‘a) 1og8128 = X b) 1081 400l0 = % c) logy 10.01 = x

5.

Without graphing describe the relation between the graph of
f:x—sa® and the graph of g:x—>a >,

Solve for x _
log,(x - 2) + log, x-= 3.

2

Are f:Xx—>1ln X and g:X—>2 1ln x the same function? Explain.

What 1s the relationship between the graphs of ¥y = ln x and
vy=1n kx (k >1) ? =

Answers Eg_Illustrative Test Questions

l'

2.

a) Jnx o b) n (ex) . )
a) Inab=3+2=5 d) _%E_%%==é;

Z; iz ;.:n3b-=23;21= ° e) Ina?=21lna=6 e
° £f) (in a)2 =32 =09
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a) X = 2
b) x=7
c) Inx =1, hence x = e
‘ 1
d) 2 1n &* = ln(ex)2 = 1ln (e2x) =-%<===> e€ = ¥
a-nd x=%
1
a) % b) 3 c) 2

The graphs are symmetric with respect to the y-axis.

1982(x~2)(x) =3 = log28 esx° - 2x = 8.
!
The only solution is 4 since x S O.

No. The domain of f 1is {x: x ¥ 0} and the domain of
g is [(x: x>0} .

Since In kx =1n k + 1lnx (k> 1, x> 0), the two graphs
have exactly the same shape, but the graph of y = 1ln kx is
In k units higher than the graph of y = 1n x.
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Chapter 5
CIRCULAR FUNCTIONS

Introduction

This chapter is not a course in trigonometry in the solution-
of~triangles sense. It 1s expected that, normally, this aspect of
trigonometry will have been studied previous to the present chap-
ters This 1s not unconditionally necessary, however. If the
student is unfamiliar with the simpler methods for solving right
and obliqué triangles, it is suggested that some time be devoted
to Section 5-15, in the Appendices., If necessary, this work can
"be assigned concurrently with the study of Chépter 5. A further
section in the Appendices (Section 5-16) includes practice materisl
in proving trigonometric identities and solving trigonometric
equations. Although some attenﬁion is given to these topics in
the text (Sections 5-9 and 5-13), the treatment is probably in-
sufficient if these subJects have not been studled before.

Emphasis 1s placed on the periodic property of sin and cos,
(A relatively small part of the Chapter is devoted to tan.)
Extensive use is made of the idea of rotating the plane about a
perpendicular to it through the origin. Thls gives a‘certain unity
" to the discussion. Consistent with this emphasis, we have derived
the formulas for sin(x + y) and cos(x + ¥y) 1in terms of the
simplest properties of rotation. We believe that this approach is
a natural one (no tricks!) and that the student will really under-
etand analytic trigonometry when he studies 1t in this way.

If time does not permit doing the whole chapter, Section 5-12
can well be omitted without lecss of continuity.

130
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5-1, Circular Motions and Periodicity
The emphasis throughout is on the periodic properti of the

circular functions, i.e., the sine and cosine. In begiruing the
chapter you should emphasize that we shall talk here about func-
tions which differ from those we have previously studied in that
they have the property of periodicity.

One good way to visualize a periodic function is in terms of
the machine developed in Section 1~1. If the function depicted
by the masbine is periodic, then when X, X +a, X + 28, eeoy
X + na, are dropped'into the hopper we obtain the same output,
£f(x), in each case. In the next-section we speak of laying rec-
tangles containing one complete cycle of the function end to end
and you may wish to use the idea here in order to 11lustrate fur-
ther the meaning of periodicity.

The use of the uv - and xy - planes which we employ may
be a source of difficulty at first. We wisﬁ to talk about the
unit circle with which we define sin and cos, but later we
shall need to display the graphs of ¥ = sin X and ¥y = cos X
on an Xy - plane, Since we are using X for arc length (to
obtain the familiar sin x and cos x) it might be confusing to
teach the student to visualize - x as both the horizontal axis on
the plane of the it clrcle and at the same time a length of
circular arc. We feel that if care .is exercised at the time the
transition is made in Se ‘tion 5-2, the use of u and v 1is more
satisfactory thanvtrying to get x to wear two hats in this
section.

A more exact way of defining sin and cos 1s by a compo-
sition of two functions, one from the set of real numbers to the
set of geometric points on the wnit circle and the other fron che
set of points on the circle to the set of real numbers. Thus, if
X € R and if P 1s a point on the unit clrcle, we have a
function ‘

f: x—P
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and ancther function
g: P—>cos x

from which

. gi: x—>cos x
and similarly for the sine. We feel, however, that the way in
which we have handled 1t in the text, while possibly less rigorous,
is certainly easier to teach and 1s perfectly adequate for our
purposes.

The fact that cos and sin are functions from real numbers
to real numbers should be emphasized. You might point out to the
student that nowhere in this section have we used an angle and,
although we have used the concept of arc length, sine and cosine
are completely divorced from any geometric considerations. They
are functions on the set of real numbers in the same sense as
polynomials, say, or -exponential functions. Too ofteﬁ when we
speak of sin A, the students feel that A must be an angle.
Sometimes they think of A as being the dezree measure or radian
measure of an angle, but the ldea that A need have no connection
with an angle is usually very strange,

Exercises 5-1

The exercises lean on the notion of periodicity. The first
five are not difficult. We have starred Exercises 6 - 9 since
they require more insight than the others, but i1f Problem 7a is
not assigned as homework, it should be covered in class, since
this relationship is used in Section 5-4.

Answers to Exercises 5-1
1. The rotation of the earth about the sun every 365% days.

The phases of the moon; period is about 29% days.

The swinging of the pendulum of a eclock; for a grandfatherts -
clock, the period is usually 2 seconds.

[sec. 5-1]
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” '|The oscillation of a piston in a steam engine or internal
" combustion ~ngine, period depends upon speed of engine,

The alternation of A.C. electric current; for 60 cycle
current, the period is 1/60 second.

Oscillation of vacuum tubes, vibrations of strings of musical

instruments (sound waves in general), etc.

2. a) P(-3) or) = p(3F);

e

b) P(37) = P(7 + 27) = P(7);
c) P(-%I-r) = P(F - 2m) =‘P('-T§r)s

d) P(4076w) = P(O + 2038+27) = P(0).

3. a) (0, ~1); c) (0, 1);
b) (-1, 0); a) (1, o).
h, a) x =-%F, %g c) x=0, 2T
b) x=m, 3T ‘ d x=1m, 37
5. a) x = -‘ﬁ;r, % , b) x = %: %

*6, a) sin 2x = sin(2x + 27) from periodicity of sin,
= 8in 2(x + 7), and the period is .

b) sin %x = sin(%x + 21r>

= sin-%(x + 4w), and the period is Um,

c) cos bx = cos(lx + 2m) -

= cos 4(x +-g), and the period is

rolg

d) cos %x = COS (%x + 2m)

= cos-%(x + 47), and the period is I,

. 193
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*7. a) f(x) = f(x +a), g(x)=g(x+ a). Given.
£(x) + g(x) = £f(x + a) + g(x + a). Addition Axiom.
(f +g)(x) = (f +g)(x + a). By definition.

,.f 4+ g 1s periodic with period a. By definition.

To show that a 1s not necessarily the fundamental period,
you can use, for example,

f: X~—>1n sin x and g: X—>1n cos X,
each of which has period 2w. But
(f + g)(x) = 1n sin x + 1n cos x = 1n (sin X cos x)

1n (%-sin 2x)

it

and f+g therefore has fundamental period .
An even more striking example is afforded by
f: X—> 8in x and g: Xx—> ~ 8in x;
then f + g: x —>0 and has every real number as a perlod,
but has no fundamental period.

b) f£(x)-g(x) = £(x + a)-g(x + a) Multiplication Axiom.
(£og)(x) = (£+8)(x + a) Definition.
S .feg 1s periodic with periocd a. Definition.'

An example in which a 1s not the fundamental period is
f: x—> 8in x and g: X—> coS X

which ylelds

feg: x—>» 8in x cos X =-;Jé'- sin 2x
with fundamental period .
*8, f(x) = £(x + a) ' Given.
g(x) = g(x) if g 1s defined at x.
g(f(x)) = g(f(x + a)) Substitution.
(gf)(x) = (gf)(x + a) By definition of af.

S.gf 1is periodic with period a.

194
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*9, If a 18 a period of cos, it must be true that
cos(x + a) = cos X
for all x€R. In particular, it must be true if x = O:
' cos a = cos 0 = 1.
But the only point on the unit circle with abscissa 1 1s
(1, 0), which corresponds to x = O + 2nT.

The proof for sin 18 similar; use x =-g.

5-2. Graphs of Sine and Cosine

The rectangle device used here can be a very useful one in
teaching the student to graph periodic functions. By establishing
the period and amplitude visually it directs his attention to a
specific region of the plane with respect to both the domain and
range of the. function.

We use the geometric argument to obtaih specific values of
the functions, because 1t 18 the simplest and most familiar tool--.
available to the student. We hope that you will emphasize the
symmetric nature of the unit circle and that the student will be

encouraged to use considerations of symmetry whenever possible.

Exercises 5-2

The exercises develop some sSimple symmetry properties of
sin x and cos x, and lead the student into understanding the .
af’ect of the constants A, B, and € in y = A sin(Bx + C).

Answers to Exercises 5-2-

1. a) £(3m = £(m = -1 Q) £330 - (@ = V2
) ) = 2@ = 3 e) £(-Tm) = £(r) = - 1
) £ =¢@) = o £) £(-9T)= £(3M)- - &




2.

3.

a) f(w) =0

/3
) () =2

) £(f) = 1
a) x = +nT

b) x =~%F + nmT

d) For all values of x.

. 1zl
R
2
\\ //
N [/
. /4 L
t 7/ L y= 5 C0S.X
\,\ i
0 L~ NS
7 2w
\T... .T
\ L Rl
' ! T 1y¥ 2 cos.x
N L/ ;/7 L
e N T
\'l i
3 N/ T— Y= 3cos.x
[sec. 5-2]
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7. a) The values of the ordinate are multiplied by k.

b) The period of the graph is ZI.
c) The graph 1s shifted to the left by the amount x = k.

8. cos(x - %) = sin x.

9. a) P, and P, are symmetric
with respect to the origin.
Pl =‘P(X) = (u: V):

Py =p(x = ™) = P(x + )
= (- u, - V)-

Hence, coS X = -~ cos8(x - 7) =
-~ cos(x + m),

and
sin X = - sin(x - )

- sin(x 4+ 7).

0

b) P, and Py are symmetric with respect to the v-axis.
Pl =70(x) = (u: V):
2=f(-.x-7r)=f(-x+‘rr)=(—ll, V).

Hence, €08 X = -~ coS(~ X = T) = - cos(~ x + 7),
and sin x

sin(- x -~ 7) = sin(- x + 7).

5-3. Angle and Angle Measure
This 1s probably review material for most students at this
level. Formulas (1) and (2) are the standard radian-degree rela-

tionships and the exercises are routine drill in going from one to
the other.
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Answers to Exercises 5-3

1. a) 120° -~ a) 210° g) u480°
b)  30° e) 360° n) 648°
¢) -120° £) 150° 1) 5&5°

2. a) ¥ a F &) ¥
v) -% e) h) g

3T T T
¢) ) -5 1) 1o
3. m=_2.1_\_=_2ﬁ7L= o
r 9
2 .

4y, A =% g = (3/2%W Yoo square units.

5. a) Since 90° = 100 "units", 1° = 199 Munits",

b) Since L = 100 "units", 1 radian = 222 "ynigs®,
2 . ’ T .
c) m=_%=%g= 2 radians; hencea = -li?r-g "units",.

5-4, Uniform Circular Motion

This unit should be taught with care, -since the material
included will be used in Section 5-8. In dealing with sin and
cos as time functions we usez/ t where 7/ 1is the angular
velocity, because this is the form in which 1t appears in most
scientific applications. Since up to this boint we have dealt
with functions connected with an arc length x, you should spend
a little time familiarizing the student with# t.

The device used in the text to visualize the behavior of a
wave 1s only one of several which you may wish to try. Most
currently available trigonometry texts have some such approach
to the problem,. and you should supplement the textual explanation .
with any other-means you feel appropriate.

[sec. 5-4]
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We chose the acoustical example to build upon since the
addition of pressures is intuitively simple.

When we use a graph to enhance the student's understanding of
a function which ma™s real numbers into real numbers, we gl'ie a
true picture of the function only when we use the same scale on
both axes. We have followed this practice in most of the graphs
of this section of the text. On the other hand, it is sometimes
desirable to distort the graph by using different scales in order
to show important details which might otherwise be indistinct or
confused and when we graph an equation which describes the rela-
tionship between two phys1cal quantities, the question of equal
scales may be meaningless. If the pressure P at time t 1s
given by an equation of the form p = P cos (#/t +a ), we cannot
use the same scale on the p-axis as on the t-axis because there is
no common measure for time and pressure. Because thils situation
is one of common occurrence in applications of the circular func-~
tions, we have not always igsisted on the equal-scales principle.
See, for example, Figure 5-4e, and many of the graphs in thils
section of the commentary.

Answers to Exercises 5-4

1. See Graph. (Note scales.)
The graph of p = 3 cos 7t + 4 gin 1t 1s periodic, with
period 2, since corresponding points on the graph are
2, 4, 6, «os , 2n units apart when measured along the t-axis.
(Periods of 3 cos 7t and ! sin 7t same as period of D.)
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2. a)
y
.4 NN
1/ \\ y=2 sin. 3t
| 2
: The period is -g-r
0 "t
. 2w v 4 The range is -2 ¢y < 2.
. v\ 2 LV L
| \\ //
-2 nmnt
b)
\
LY
34 N
] y=3sin 2t \
4 \
/ N
\
0 " + - >1 The period is . :
'h’ “n’~____3'h' ~
\ - 1 7 The range 1s -3 <y < 3.
‘Ul / '
\ 4
TN
N\
\
-3
'
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aY |

N | i
s \\\ //j
N y= 4cos. (%) D
N |
\
0 W |
™ T 73w T
\\ /
2 The period is 4 ¥
\ . /’ The range i$—4SyS 4’—:
\\‘ /‘/
d)
ry
N
N y= 3 cos.(x) .
N
0 >
: i 2 2w _{ %
3 /
\ .
A /
N
? [ 4/
The perinad is 27.
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e)
A 22 si
y=2 sin.x-Cos.x
3
2 “—‘ {?\
1 “\\‘\\ Y, = COSX
p N .
1 =52 N e
o [P TR X% - X
D4 PASNEECANA WP T LR
-1 l : - ‘,(‘- '/‘
I “A ol‘
s, .
-2 y|=2$ln.x / N \—'_}_d "y = yl _yz

The period is 2. The range is -+/5 < ¥ V5.

5-5. Vectors and Rotations

We chose the vector approach to the addition formulas for
two reasons. First, it should be a means of deriving these rela-
tionships different from any which the student has previously
encountered. Second, it 1s an extremely'simple and efficlent
means of obtaining these relationships. We do not, of course,
intend this to be a thorough treatment of vectors.

'We anticipate that the 1dea of a rotation as a function,
and its effect on a vector, will have to ‘be explained very care-
fully. - You should do a lot of blackboard work here, giving a
variety of s;mple manipulative illustrations. By using chalk of
different colors, you'can probably improve on some of the figures
(such as Figure 5-5e, for example) in the book. Show vectors

[sec. 5-5]
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rotated in both directlons; illustrate rotations followed by
rotaﬁions; show the rotations of the components of the vector as
the vector rotates; in general, make sure that the ldeas involved
and the symbollism expressing the i1deas are clear.

Exercises 5-5

You may wish to devise addltlonal driil .. ..:«..u8 1in the use
of rotation. Exercises 1, 2, 3 and 4 are cases in point and such
problems are easy to make up.

Answers to Exercises 5-5

1. T = (—‘Z——g)u + (l—g)v, x =-.}+-’ .

2, a) T = (—-%)U +(-Y£§)v, x = 3T,

3
b) T = (-‘—/—QE)U + (- 3V, x = 2L,
3. a) f(U) = (0O)U + (-1)V==-V
b) £(U) = U
booa) £(v) = (L + (L2
b) £(0) = G+ LDy

5. £(u) = (-2 + (LB)v

6. %-’-r = :,'f +32_r_ , and the result follows from (7).

T« JTet f correspond to a rotatlon x and g to a rotation ¥y .
Then x and ¥y are real numbers, hence ¥y + X = x + ¥y, and
the desired result follows.

Geometrically, the result means that a rotation through

arc Xx followed by a rotation through arc y is equivalent
to a rotation through arc ¥y followed by a rotation througn

arc Xeo
[sec. 5-5]
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8. Since V = g(U),

£(v) = £(a(v)) = (£g)(vV)
= (gf)(U), by the result of Exercise 7.

9.' From Exercise 8,

£(v) = £(g(v))
= g(£(v))
= g(uU + vV)
= ug(U) + vg(V)
= aV - VU
since

g(U) = Vv and g(V) = -U.

5-6, Addition Formulas for Sine and Cosine . y

The derivation of cos (x +y) and sin (x + y) 1s usually
accomplished either by geometric considerations in the first ‘
quadrant (which then involve a great deal of work to generalize),
or by use of the distance formula. As remarked before, we feel
the vector approach to be new and instructive and, in essence,
simpler than either of the aforementioned. We include the page
on the relation to complex numbers to show still another means of
deriving these formulas.

200
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Exercises 5-6

The exercises are, in general, identities; applications of
the sum and difference formulas. You may wish to illustrate a
few samples on the blackboard before asking the students to work
the exercises., Exercises 4, 5 and 6 are important since the tan-
gent function appears here for the first time and some of its
properties are invesfigated. You should be sure to cover these

exerciles at some polint in the work.

Answers to Exercises 5=b

1, a) cos (% - X) = cos-g cos x + sin

sin x

rolg

O 4+ sin x

= 8in x

b) sin 6% - X) = sin-g coS X - coS 5 sin X

rol=

= CcO8 X - 0O

= COS X

c) cos (x +ag) = COS X cos-g - 8in x sin

roly

= 0 - 8in X
= « 8in x
d) sin (x +-g) = sin x cos-g + cos x sin-g
= 0 4+ cos x
= cos X
e) cos (T - X) = cos T cos X + sin T sin x
= (=1) cos x + O
= e~ COS X i
f) ‘sin (r = x) = sin T cos x - cos 7 sin x
=0 - (~1) sin x

= 8in x
[sec. 5-6]
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g) cos (%g 4+ X) = cos %} cos x -~ Sin %} sin x
=0 = (—1) sin x

sin x

i

h) sin (%g + X) sin.%}ncos‘x + cos %; sin x

= (=1) cos x + O

= = CO038 X
1) sin (] + x) = sin T cos X 4 ‘on  sin X
= (-"-’-—‘ﬁ 3 % 4 wsln Xx);

cos GE - x) = cos % cos X + sin~% sin x

J 2

= 0——%)(cos x + sin Xx).
Hence, sin (% + x) = cos (% - X).

‘2, sin (x - ¥) = sin [x + (-¥)]
= sin x cos (~y) + cos x sin (-¥)
= s8in x cos y -~ co8 X sin ¥

%3, Formula 10: cos (x -F cos X coS ¥ + sin x sin ¥y

|

cos [x - (-y)]
= cos x cos (-y) + sin x sin (-y}

To derive 7: cos (& = 7)

|

=cosS X cosy ~sinx siny

To derive 8: sin (x + ¥)

|

cos L% -(x + y)] from Exercise la.

|

cos [(F-x) =~ ¥]

= cOS (% ~ x) cos ¥y + sin (_1ér__ x) siny

To simplify cos (g - x* and 8in (g - 2, use Exercise la.

‘sec. 5-6]
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5

sin x

cos (% - x)

sin (—72—r - X) = cos [—725 - (%r - x)]
= COS X.
T T
Hence, cos (-é- ~ x) cos y + sin (-é- - x) sin y
becomes 8in x cos y + cos x sin y.
Therefore, sin (x + ¥y) = sin x cos ¥ + cos x sin y.

To derive 11, use 8 Just obtained:

sin (x - y) = sin [x - (~y)] N
= sin x cos (=y) + cos x sin (-y)
= 8ln X cos y -~ cos x sin y.
. sin x r
tan : x > = (x £ + 5 + 2nm)

To prove that tan 1s periodic with period w, we must prove
that tan (x + ) = tan v,

o « _ sin (x + m)
From the definition, tar =z + 7i = cos (x + )

_ =8in x
= T2 x (from Exercise g;j,
= tan x ,
mw
sinn (= + 2nw
Now tan (_+_—7§r + 2nmw) = (""?. ) .
ces (_";% + 2nm)

But the denominator of tl: s fzgution 1s zero and therefore the
values of tan (+ % + 2nw;  are undefined.

sin (x + y)

cos (x + vy}

tan (x + ¥y) =

sin x cos ¥y -~ 20w x sin ¥
= T
cos x cos ¥ ¥ slm x sin y

[ \V)
<o

[sec. =.48]
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Dividing numerator and denominator by cos X cOS Y,
sin x cos ¥ + cos X sin y

__COS X cOS y — cO8 X cOS ¥
co8 X COS y sin X s8in y
cOS X cos ¥ cosS X cos ¥
sin x + sin ¥y
cOS X =— CcOS ¥

-  8In X sin ¥y
1+ cOS X cosS ¥

tan x + tan y
1 F tan x tan ¥y

tan 7 - tan x
+

6. tan (T - X) =1 tan 7 tan %
0 - tan X
= + O
= - tan x
tan 1 + tan x
tan (7 + X) =T _gan 7 tan X
0 + tan X
==3 -0 = tan x
_sin (-x) _ = sin x _
tan (- x) =53 (=x) T~ cos x tan x
7. sin 2x = sin (x + x) = sin x cos x + cos X 8in X

2 sin x cos x

coS X ¢cos X - 8Sin x sin x

0032x - sin2x

tan X 4+ tan x
1 - tan x tan x

cos 2Xx = cos (X + X)

]

tan 2x = tan (x + X)

- 2 tan X
1 - tanx

8., sin 3x = sin (2x + x)

= sin 2x cos X + co8 2X sin x

2

= 2 sin x cos®x + (cos®x - sinzx) sin x

= 3 8in x cosax - sin3x

210
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9, cos2Xx =1 - 2 s8in“x
Let x =%

cos ¥y =1 - 2 sinz-%
sinz-% - 1l - gos N

sin%:i\/i%x

10. cos 2x = 2 cos2 X -1
Let x=%
2y
co8 ¥ = 2 coS 5 - 1
2y _1+ cosy
cos 5 = 2
¥ _ 1+ cos y
cos § = & 5
sin
1l. tan £ = 5
cos %
= !
+ (1 cos y ,

Multiply the right member by i.: ess ¥’

2
ta.n%’:\/l'cosﬂ
1l - cos
Note: The result glven 1s correct

l ~cosy
ik///l - cos y)? since tan-% and Sin 3 agree

2
in sign for all possible combinations

sin™ ¥y
l ~cosy of 8ign of cosy and siny .
sin y

211
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Multiply the right member by N//%{Efﬁﬁ}g};
\///i - cos2 Ni
(1 + cos y)2
«///Sinz'y
(1 + cos Y)2

=-I—%%§§§E; (See previous note.)

J _
tan 5

|
1+

]
4+

Alternatively,

WMy

tan-% = = T +cosy .

5-7. _Construction and Use of Tables of Circular Functions

Since this material i1s largely in the nature of a review,
you will probably not wish to spend much time on 1t. The table
of decimal fractions of w/2 will be new to the student, but-we
use 1t as we do any other table and 1t should cause no difficulty.

Answers to Exerclses 5-Ta
l. Table I is not folded because the values of x are gilven in

such a way that they are not symmetriczl about '

x =-g-x 0.785." For example,
cos 0,60 = sin G% - 0.60).
Since we are using radlan measure, % 1s irfational, and
. hence we would have to use an irrational interval (as 1is done

in Table II) to get a symmetric table.
cos 0,60 X 8in (1.57 - 0.60)

x sin 00970
2139
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From the table, cos 0.60 = 0.8253 and sin 0.97 = 0.8249,
The values of cos 0,60 and sin 0.97 would have to be the
same if the table could be folded,

2. a) sin 0.73 X 0.6669, cos 0.73 ~ 0.7452
b) sin (- 5.17) = sin (= 5.17 + 2m)
~ sin 1.11 % 0.8957
cos (- 5.17) X cos 1l.11 ~ O.UUk7
¢) sin 1.55 % 0.9998, cos 1.55 ~ 0.0208
' d) sin 6.97 = sin (6.97 - 2m)

~ sin 0.69 ~ 0.6365

coS 6.97 ~ cos 0.69 X 0.7712
3. a) sin x ¥ 0.1099, x ~ 0,11
) cos x ~ 0.9131, x ~ O,k2

22

c) sin x ~ 0.6495, x X 0.71

d) cos x ~ 0.5403, x
n_nu

Note: Heregfter we use = for

k. a) sin 0.31(F) = 0.468, cos 0.31(%) = 0.884

1.00.

nnit
~ e

j b) sin 0.79(F) = 0.9%6, cos 0.79(F) = 0.324
., c¢) sin o.62(12') = 0.827, cos o.62(—’2-') = 0.562
d) sin 0.71(F) = 0.898, cos 0.71(F) = O.440

5. a) sin wt = 0.827, t = 0.62

b) cosw t = 0.905, t = 0.28

c) sin= t = 0.475, -t =0.315

' d) cos® t = 0.795, t = 0.415

[sec. 5-73
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sin 45° = 0.707, . 0. 707
sin 730 = 0.956, co8 fo7 = C. 32

* 8in 36.2° = 0.591, cos 36.2° = 0.807
sin 81.5° = 0.989, cos 81.5° = 0,148
sin x = 0.629, x = 39°
cos x = 0,991, x = T.7°
sin x = 0.621, x = 38.4°
cos x = 0.895, x = 26.5°

Answers to Exercises 5-Tb

1.
2.

3.
L,

5

10.

1.
12.

sin

coS

sin

sin

coS

cos
cos
sin

coS

sin

cos

coS8

1.73 = sin (7 - 1.73) = sin 1.41 = 0,9871 (Table I)

- co8 0.3T = = COS 0.600%)
- 0.588 {Table II)

1.3mr = - cos (1.37r - )

(- «37) = - sin .37 = - 0.3616 (Table I)
(- .37m) = - sin .T4(F) = - 0.918 (Table II)

2.87 = cos (2.8T - 27) = cos 0.87 = - cos (7w - 0.87)

= - co8 0.2m = - coSs 0.4@%) = - 0.809 (Table II)
1.87 = cos (27 - 1.87) = cos 0.2 = 0.809 (from Ex. 5)
3.71 = = co8 (3.71 = ) = = cos 0.57 = - 0.8419 (Table I)
135° = sin (180° - 135°) = sin 45° = 0.707  (Table III)

(- 135°) = - cos (180° - 135°) = - cos 45° = - 0.707
(Table III)

327° = - sin (360° - 327°) = - sin 33° = - 0.545
(mable III)

(- 327°) = cos (360° - 327°) = cos 33% = 0.839 (Table III)
12.47 = 08 (l2.47 - 12m)

<1l

cos O.UT = cos 0.86%)

0.309 (Table II)

[sec. 5-7]
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13. sin 12.% = - sin (&7 - 12.4) = - sin 0.16 = - 0.1593 (Table I)
*#14, cos (sin .37) = cos (sin 0.66%)) = cos 0.809 (Table II)

= 0.6902 (Table I)
#15, sin (sin .7) = sin 0.6442 = 0.6006 - (Table I)

5-8, Pure Waves. Frequency, Amplltude and Phase
We chose cos as our standard wave because its first peak
-occurs at 0. Since we are using peaks to discuss phase, cos
-gerves better £han sin which peaks first at 7m/2. The phase @
is often called a lag (« > 0) or a lead (c¢0); if ¢« =0,
the wave is in phase with the standard. By using 0  « < 2w,
we avoid all mention of a wave "leading". This is a departure
from the conventional, in that most sciences which have occasion
to discuss lead.or lag use both. You may wish to explore this
idea by examining with the class the effect of using - T L a@x < ™,
and show that @ ¢ O represents a lead in the sense that « > 0O ‘
represents a lag. n
Note that « 1s not, in general, the abscissa of the first
maximum. In fact, A cos (#t -« ) (A > 0) reaches a peak when

"/t - =0 or t = X . hence the abscissa of the first maximum

z/
is g% .

Answers to Exercilses 5-8

p=0 if wt - 0.927 ¥ F or %I .
Hence, 1f . ;3
~ 0.927 1 0.927 , 3
t ~ -%%;1-+ 5 or =L+ 5 .
Since 0:927 % 0,29, & X 0.79 or 1.79.

215
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2. a)
A
1Y
. 2
A \ ‘
/ \ / Amplitude = 2,
\L L LY lewl TN » st Period = §5 |
3 .
3 ; \ } Phase = 0.
| ] 1/
-2
b)
Ay
2
N /] N, /]
\ ) d N\ P
TN \ /
\ / \ /
/ \ /
ol 1 LN | -
x 2w / v sl | 3w \ 2 [.18.’71‘__23_’"‘:7
‘ \ / \ /
- \ / \ /
N ) ' AN /|
N N ]

-2
Amplitude = 2, Period = i}-’, Phase = O .
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c)
A
y
3
Z N /
\\\ / \\ 1/
2 \ / \ /
\ [ \ A4 /
‘ \ / \ / )
° La ™ 3 %
- \ 2 / \ 2 1/
A / \ )4
\ i \
-2 \ ¥ \C 4/r““"““”‘"’”“"
N N 7
-3
Amplitude = 3, Period = T, Phaée = 0.
d)
Ay
2 <
/ N / N
/ N
{
o 21 - 6 8 v IOw r2m'__{
—I d —d [ VUG URPUUS NN IR SUNINNS QU SPRAS By
Nt N T e
-2 & [0 WO QS NEGE S8 4 4o i -~ r__A R

l9r 3w
Amplitude = 2, Period = 6w, Phase = §’%T =5 .
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e)
A
y
AN N [
N / N
4 N D4 N T
° e N1 1 \\~ -
' s / R LA N 2w
= .. \\ } 7 \, /I
- 1T N
2 T _ ot ; A
Amplitude = 2, Period = , Phase=2-3F = ST
£)
A
Ty
5
N A N /] N ’
N REN
B 4 \ / \
\ [ \ / \.
0 s
1.4 > A *
VRV A / :
\_| / \ /
\ / \ /
N 4 "\ y
-5

Amplitude = 5, Period = %g, Phase,ga.%&¥~= E%E,
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3. a) ¥y = A cos (wt—dl)sAcosWt cos € + A sin%@/ ¢ sin«
v =4 sin 7 ~ 3 cos wt
Asiﬁoc =4, Acosa = -3

| Ag(ssinao: + cos® « ) =16 +9 e

B2 =25 A=5

it

sin « ‘;%, cosw = ~

€ n T~ 0927 ~ 2.215

ulw

Answer: ¥ = 5 cos(mt - 2.215)
b) y=-4 sin 7t + 3 cos 7wt
Asilna =~-4, Acosa =3, A= 5.

€ X 2T ~ 0,927 X 5.357
Answer: ¥ = 5 cos {mt ~ 5.357)

c) y = _4h sin m - 3 cos 7wt
A

5,sincc=--g-,coscc=-_—%.
€ ~ T+ 0.927 ~ 4,069
Answer: y = 5 cos (mt - 4.069)
d) vy +

A =5, sin .

3 sin 7t

4 cos 7t
| =-g- ,  @0.64k

|
ul

.
Q
(@]
/)]
2

Answer: y = 5 cos (mt -~ O.644)

e) y=3sinmwt - 4 cos wt
A =5, sincc:-g-, cos « =-—]5i

€ ~ T - 0.644 % 2,498
Answer: y = 5 cos (mt - 2.498).
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Although the directions in this problem do not ask for the
values of t at which the maxima and minima occur, they have
been included in these solutions in case the question arises.

a) A=5, sin« =%’ cosc =1;-, o« ~ 0,644,

Hence, 3 sin 2t + 4 cos 2t X 5 cos (2t - 0.64}4),

Maximum value, 5, occurs when cos (2t - 0.,64%#) = 1, or
2t - 0,644 = 0, t = 0,322,
“Minimum value, -5, oceurs when cos (2t - 0.644) = -1, or

2t - 0.644 = 7, t X 1.893, |

- 2r _z2r
The period = T =5 = Te

Hence, maximum values occur at t ~ 0.322 + nm and
minimum values at t % 1.893 + nme
2 -3
b) A:‘VH+9=V13, Sind:ﬁ, COS(I-:"/;_._—,
x~ T - 0.589 X 2,553, '
Hence, 2 sin 3t - 3 cos 3t ~ 413 cos (3t ~ 2.553).

The period = %g . Maximum values, +~' 13, occur when

2nT

3t - 2,553 = 0 + 2nm, t ~ 0.851 + 3 .

Minimum values, =+/13, occur when

3t - 2,553 = T + 207, t % 1.898 + 2T ,

[sec. 5-8]
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u.

5.

c) A=v14+1=+~2, sina = -

1 1 T
— , COB U = —= , (X =
Hence, - sin(t/2) + cos(t/2) = /2 cos(t/2 ~ Tm/l) .
The period = 2T1r = U7, Maximum values, +/ 2, occur when

2
L _IT_ S
2--%-_0+2n7r, t =-5—+ Mnm.
Minimum values, -~ 42 occur when
t

-2--%-"='rr+2mr,t=%'r-+4mr.

=]

cos(@/'t ~a ) + B cos(z/t -)
A cosz/ t cos« + A sinZ/ t sina + B cos#/t cos
+ B sin#t sin~&
(A cos @ + B cos,& ) cosz/t + (A sina + B sing) sinw/t
C cos{(#t =77) when '

¢c= V(A sin « + B sing)“ + (A cosa + B cos&)< ,

sin 77 = A sin% + B sinxé’, and cos7’ = A cos O:C+ B cos &

Since A, B, «, and, are real numbers, it follows that C 1s
a real number, and it is easy to show that

0 < sin® 77 <1, 0 coszf_g 1, sin®7” + cos® 77= 1,
and therefore 77 1s a real number.
a) From the solution in the text,
_0.927 , 1
So t X 0.295 + 0.333 + 2n.

The smallest positive value of .t 1is
t ~ 0.295 + 0.333 = 0.628.

b) 3 coswt + 4 sinTt =5
5 cos(mt - 0.927) = 5
cos(mt - 0.927) = 1
[sec. 5-8]
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d)

This is satisfied wzxen the argument of the cosine is
¢~ 2nm.
Therefore,
Tt - 0,927 = +« 2nm,
or
t ¥ 02250 . = :0.295 + 2n.
The =mallest positi . Ve ue of t 1is
t ~ 0,295,
sin 2t - cos 2t =1
J/Z cos (2t - JF) =1
cos (2t --%F) = L%-.
This 1s satisfied wher. the argument of the cosine is
Therefore,
2t -%:i%+2mr,
or
T
The smallest positive value of t is
t =:,Er .
4 cos vt - 3 sin 7 = O

5 cos (mt - 5.640) = O
cos (wt - 5.640) = 0,

This is satisfied when the argument of the cosine is

* I + 2nT.

2
Therefore,
TS - 5.640 =i% + 2nm,
or '

The shéilest positive value of t 1s
t A~ 1.795 + 0.5 = 2 ~ 0.295.

[sec. 5-8]
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e) 4 coswt+ 3 T -
5 cos (mt -~ D.64E =
cos (mt - 0.644) = ...

This is satisfied wre- tne ~——gument of the cosine 1is
approximately + 1.3 + 2r1. (from Table I).
Therefore,

'"‘b - 006)4’)4’ x i 1.36( o
or

o~ O.6Mk + 1,37 .
£ ;

The smallest positiv: duwe ol t 18

x‘ 00644 + 1.3% . {; -x: 3-641.

t T

7. Given y =B cos (A t =< }.
We may clearly assume tha C (& < 2.

1. If4 and B are pos: =, we set 4 =« , B =A,G=a

2. If.4 1is positive and B s negative, et =w , B = =A.
Then ¥y = A [~ cos (Wt ~#)] =Acos Wt ~& +T)e
If 0L @ <™, takem =& + 7T
If 7r_§/3<27r, take g =4 - T.

3. if,& is negative, set.4 = -4/ .

Then ¥ =B cos (=Wt ~&) =B cos {(wt +7)
B cos [ewt - {Zm =5 )]
= B cos (wt - & ..

Proceed as in 1 and 2.

5-9. Identitles.

The identities dealt with here are somewhat more difficult
than earlier ones. It may be necesszry for you to work a few
additionai examples on the blaskbozrd to help get the students
started.

22%
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Answers

Eg_Exercises H=C

1.

2.

3.

5e

cos (x + y)
cos (x - y)

cos (x + y)
cos X cos y
cos (x - y)
8in x sin y
sin (x + y)
sin (x - y)
sin (x + y)

8in x cos y

u

+

+

cosS X cos y
cos X cos Yy

cos (x - y)

-

+

%[cos (x + )

cos (= + y)

—
=

%[cos (x - ¥)

sin x cos y
sin x cos ¥

sin (X - y)

sin x sin y
sin x sin y

2 cos x cos y

+ cos (x - y)l

2 8in x sin ¥

- cos (x + V)]

4+ cos x sin y

Zlsin (x + ¥)

COS Mg °COS n & = -]2-'[cos (

sin m« esin n « =%—[cos (

m

m

sin m « ecoS n « =-%[sin (m

sin « + sin &

Replace,Z Db

sin ¢ - sin,é’

In (5), let «

cos

-
a) sin I5

y

=251n&+ﬁ

2

cos X sin y
2 sin x cos y

+ sin (x - y)l

+n)g +cos (m~n)q ]

]

-n)a« - cos (m+ n)

+n)e +8in (m ~ n) « ]

| <4

cOoS8 )

- wand sin & by 5sin,é?. Then

2 sin

i

oL - cos,cy =

i

]

sin (%‘-%) =

2

x and, &

L~ [

coS ) °

=-g - X. Then
CC3 X -~ 8in X

- 2 sin J sin (—2"—51@)

-2 sin (x - q)

v 2 sin G% - X).

sin -‘{f cos % - cos% sin %

(L) (D) - (L)) Lo52

[sec. 5-9]
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5. D) cos%—é: cos (:'[,-,-T-!--B

— tan /% 4+ % 3
c) tan 12T= =20 ({""%) =1 - Zc;axl;/llaﬁaIT/B
T l-/3 (2 +/3)
d) cos}%é'-r- = cos (-3K1-T+%)
=cos-§r?rcos%-sin%"-rsin%
NENTA) V2y 1, =B +2)
- (LX) - (L)) - ),
6. a) cosue - sinue = (cosze - sin®e )(cosze +sin29)

2 2
2056 -~ sin o

cos 28

b) coszo: - sin2 o« 1 - sinzo:) - sin“«

' 1-2 sinzo:

i

VR

¢) l2 -1 = 1 -2cos o
cos & cos
_,sin2
cos2m
= ’can2

Nelther sicée is d=flned 1f cos « = 0, that 1s, 1f
T
a =+ ) + MTe

d) cos (¢ ~%) =cos @ co=T+ =tn « sin T = - cosa
cos (&€ +7) =cos « cx=7 -~ Sin « sin T = -~ cos«
Hence, cos (@ = 7) =cos (@ + 7).

225
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1 sln € E‘sin%e cos}ée
e) tE.I]'ﬁe = 1 =
08 3¢ 21
2 Z 208 '56
_=2in ©
-~ -+ cos B
o 2 i - }- —~ e W
f) cus 29_2(l+c..~_« ,
= tan 6 + =02 8 «tan 6
2 tar e
_tane + sin s (tan @ £ 0)
- 2 tar @
g) (E’,:Ln'-:éL-cyz+cos,-%-(z)2
2.1 Lo oans L 21
= 8ln 5q + 2 sinﬁcc cos 5@ + COS~ F @
1 1
=142 Sin-é-mc03»~-§-a
1
=1 + sin (2v-§a )
=.1 4+ sin«
2 2 )

h) (sine + cos e ) sin“@ —+2 sin @ cos @ + cos“e

l4+ 2 8310 cos8@

=1 4+ 8ln Zg

1) 2 tan® __ CcIE & 2 =Zme ¢us F

5= == N

l + tan— e - 82223 cos™® & SIrT3

' casTe
= Zemm xos @ = 5in 2@
~-3) 1l 4+ co=8 = & (L + cos & )2 = sin‘29

sin e 1l +23msgz -~ 2 =Eneg (x+0=g)

1l 4+ Z oS € +~cos2 e + sinze
- = g (L cos g )
#4086}
=s8im e (1 + coss )

[
&

= sine °
[Neither side of theidentity is defined I= @ = n7.]

[sec. 5-9] 296
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Kk 8in 2 « cos 2& _ 8in 2« cosX - co8 24 s8in X

gir. @« ~ cosd& sizm X cos &
_sin(2g -ax: sin &
sin a« cos « " sln« cosa

“Tcosa® -

Alternatively,
sin 2« cos 2« _ 2 sind& zos & _ c:osacr - s:n2'cx
sin « cos o sin « cos &
2 i 2
cos”ad - Bin"«
=2 cosSd - 08 o
_ 2 cos2 oL ~ cosgcr + sin2cr
- ces
3 cos®q + sir—a
cos
B
T~ cosa *

The left side 1s undefined if =in ¢ cos « = O, henue if
sin 2« = 0, that is, *fa = IZ

T. &) cos®x = %(1 + cos 2x)
b) cos'x = %’(1 + 2 COE 2X % 310322x)
= %-[l 4+ 2 cos 2x +—:f-f{; + cos U4x)]

+ 4 cos 2x + cos Ix]

1
o
f e ]
(€3]

Ce 0032x==1-2:zin2x

sin® x = 5(1 - cos ox)

2 ¢cos 2x - cos” 2x)

s:l.n4 X = 717(1
= §l1 - 2 zos 2x + %(l_ + cos Ux)]

cos.2x + cos 4x]

]

od
~—
w

]
N~

~d

~,

221
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9. @) sin 20 cos® -cos 2 © 8in® = sin (2© -6 ) =sin®

. b) sin (x = y) cos z + 8in (y - z) cos x
(sin x cos y - cos x 8in y) cos z
< (sin y cos z - cos y 8in z) cos x

8in X cos y coS Z - co8 ¥ 8in Z co8 X
= (sin x cos z - sin 2z coS X) cos8 ¥
sin (x - z) cos ¥

¢) sin 3x sin 2x %[cos (3x - 2x) -~ cos (3x + 2x

= %—(cos X - cos Zx) [see (2)]
| sin 29
d) cos® - sin® tan 29 = co§e - 5in @ —=o—5
_co8® cos 26 - 8in6 8in 286
- cos 2 ©
= °°20g22°e+°L= gg: gg (valid if cos 2 9 # O.)
e) sin 36 =sin (26 +6) =sin 26 cos B + cos 28 min€
= 2 8140 cns2 o + (1 ~2 " 0 ) mime
= sin e (1 - s:l.nz'e ) =+ 8in® - = ,smse

3
3

6 + sim ® — 2 =i~

e

2
2

=2 sin & - 2 sin
3 sin © - 4 sin
3

Hence sin“e = %-(3 §in® =~ sin."® ),

f) sin 3x + sin x = 2 sin 2x cos x [by (€)1
Hence, 8in X + sin 2x + sin 3x = =in 2x[1 + 2 cos x]
1 sin X

) 1l 4+ tan x _ + Cos x _ cos = + sin x
g l-tanx’l_sinx'cc-:s-x-‘s:!;nx
‘ cos X

Hence o o o
1l 4+ tan x __cos X< 2 gim X zog X — Sin- X
1 - tanx/ c032 X —- 2 sin x rr:zos:Jt:«—-‘.--'cas'2 x
l 4+ 2 58nx cos X
l -2 =nx 08 X
=1 +-5in 2x

1l - sin 2x

[sec. 5-8]
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5-10 and 5-11. Tangents to Graphs of Sine and Cosine.

Following the general type of argument used in Chapters 3
" and 4, we show that near the origin, the graph of ¥y = 8in x 1lies
in the wedge between y =x and ¥ = (1 -€ ) x for any positive
€ , however small, and hence that the line tangent at the origin
to y =s8inx 1is ¥y =-x. A similar argument shows that the line
tangent at (0, 1) to y=-cosx 1s ¥y =1.

We then generalize these results to an arbitrary point
(h, £(h)) of the graph by expressing sin x and cos x in terms
of x - h. This leads to the results

sint = cos and cos! = - sin .

Answers to ExXercises 5-11

l. a) Putsing h =-% in (1), we have
/5
y=si:1-7—£+(cos-73r)(x-—%) = —-—"23-+-%(x-—%)
1
-+ (- .
or /3,

.5403x + .3012

i

c) ¥
2. a) Using (2),

y = cos-TGr - (sin -g)(x --6)=--%-x + (

“
I

-.9086x + 1.3996

)
)
b) .1 - sin .1 = ,1 - ,0998 = .0002
) +2 - .1987 = .0013

)

.3 - .2955 = ,0045

[sec. 5-11]
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5-12. Analysis of General Waves

The purpose of this section 1s to provide the student with
some idea of the power of simple circular functions, and to show
how they can be used to approximate much more complex periodic
functions. We do not intend that the student use Fourierts
Theorem, but only ‘that he understand what it says, and what it

implies.

230
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Answers to Exercises 5-12

AY
1. a) l_%'_ ]
4 \\
/ N
N 7 >
N /
N
N
L A
v
-
y
b T 1
- +—1 / \\// \ .........
\
. . /// - \\\‘
Tt 7 TN P\
) , q \\ // \
M. N B
\\ o A - -~ Y
3
N /[
\\ P / b
NN A a
v
. Y
c) 4
L P U :: AN\
LT RN
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4
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- J/ o -4
AWL
[T




223

2. a) 2w,

b) The cosire terms; also the terms B, sin nx, n even.

(In our - ase, a = 21 ) The function being represented
has the property that f{-x) =— £(x) [odd function].
This property holds for Sin ox but not c¢os nx. More-
over, f(x) has the property that, f(m - x) = £(x). This
property does not hold == sin 2kx, k integral, since
sin 2k(7 - x) = - sin 2k=. It does hold for sin(2k + 1)x.

5-13. Inverse Circular Functicns and Trigonometric Equations

If the student has not ccw=red this materilal before, you
‘will have to go very slowly, simme there 1s come new notatlon
involved zs well as the idea of the necessity of restricting the
“domginTto obtain a- functior ®ish.an inverse. You should make sure

that the student understancs way zuch restriction is-necessary.
"It will probably be helpful e refer back to Section 4-8. (he
solution of trigonometric egm==icns is presented briefly, but‘the
methods used in the examplss &re quite general.

232
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Answers to Exercises 5-13
1

1, ¥y = cos™°x Domain {x: -1 ¢ x < 1}
Range {y: 0Ky < )
%
______ —t—f 1
a
\\
X
-l 0 | !
| 11 |
2. a) sin"l(- %—) = - '16r c) tan'l(-JS—) - - %
b) cos"l(-“/—:g-) = --56TI d) cos™t 1 - sin"l(-l) = %r

3. a) sin (cos™t .73) = 0.68
b) cos (sin™' (- 0.47)) = 0.88
o 5
5
+ cos (cos™t %) sin (sin"l - %) = %’15"'*'%(" %) - _21).
d) sin (2 cos™t 153-]. Let cos™t 153- =g

c) sin [cos” + sin~Y(- %)] = sin (cos™t -g) cos (sin"l(-g-))

: 2, _ 120
8in 29 = 2 slng cosg =2-n-1%_-r5-§.

233
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sin (cos"l~%) = CcO8 (sin'1~%)
cos™t % = % - sin™t % Hence,

sin (cos'1~%) = 8in Q% - sin'1~%) = cos (sin'l-g) .

No. It is, however, true for 0 £ x £ J.

(tan™t x) a—=%

1+ x2 , |

or
(
x>0 X <O
result follows immediately from the flgures.
sin (2 tan~t x) = 2 sin (tan'l Xx) cos (tan'l x)
= 2 x . 1 ___2x
= : = 5
JS1ex2 S1ex? 1HX
-1
tan (2tan-1x)=2tan (gan :3 - 2x2
1 - tan® (tan™" x) 1 -x
/ 2
tan (cos'l x) = \[!Lé%li—
or
'y I—x*
' X
234
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1 1

d) sin (sin™" x + cos™t x) = sin (sin"1 x) cos (cos™ x)

+ cos (sin'1 x) sin (cos"1 x)

= XeX + \/1 - xem/l - x°

=x2+1-x2=1
or sin"1x+cos"1x='-"2-E and sin-:'e-r=1.
Valid only if 0 ¢ x < 1.
7. a) sin x + cos x =0, tan x = ~ 1
x=-34-r+mr
b) b cos® x -1 =0, cosx=_-t%
T 2T
X =4+ 2nT Or + -3+ anm
c) 3tanx - V3 =0, tanx=‘[%
x=-"é+mr
d) 1ltanx+sin2x‘.—.=0
sin x _ T
h Sex +2sinxcosx=0 (x # 5 + nm)
sinx(h+2cosex)=0
sin x = O, X = nm.

‘8., a) 2 cosx - sin x =1
ecosx—1=_-_tv\/1—cosex
1%cosex--.llcosx+1=1-—cosex
5cosex—ll‘cosx=0
cos x (5 cos x - 4) =0 cos X = 0 or cosx=%.

If cosx =0, 8Sin x= -1 to satisfy equation.
Then X = —%"- + 2nmw.
If cosx:%, sinx=%, X = 64 4+ 2nmw.

[sec. 5-13]
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b)

d)

a)

b)

227

9coszx+6cosx—8=0
(3 cos x = 2)(3 cos x + 4) =0

cos X =-=23 « Since cos X = -% is impossible,

X = 4+ .84 + onm.

S S
tan x = tan x
ta@x-].:O
tan x =1 tan x = - 1
X = +nm x=-§n7-r-+n1r
cos"2x -1 =8inx
1w 2 8in® x = 1 = sin x .
-2 sin2x=' sin x
sin x =0, s8in X = ~ %
X = nm, . X = -~% + 2nmw, - %} + 2nmT .
2 sin”™ x = F sin™! x = §
X = sin:g = 0.38.
sin 2x = cos (7 - X) cos (T - X) = = cos X
2 g8in x co8S X = =~ COS X
sinx:—% cos x =0
x=--g+2mr,--567£+2mr. X = + nm
2 sin™t 2x = 3
sin™ 2x =-%
2x = 1.00”
X=.l|-9+

230
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d) 3 sin 2x = 2 sin2x=%
2Xx = .73 + onw, 2.41 + anw
X = .37 + nm, 1.21 + n7w

10. a) x = tan x
X =0, + 449 ,
and other solutions corresponding to other intersections
of graphs shown.

g L1
y= ton. x y=X
| | i
. | | +
' L i i
e | ' /I
| I 71T
| Fal )i g
| n : |
3w/ X o [lxl/lw [l2® x
0T A7 L)/ Il
t 1
i AT/ |
H: | ! :
1 1 | {
X X 2
b) JC'2 = 2 ,? =—JE
|
Yy |
Aﬂi x=|
\ A
oy
WE
2
Y=
| \*\j
s Y 0 X
\\\
L

[sec. 5-13]
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¢) x+2s8inx=0

- X =2 8in x

y=X _4 y
N 2 7 \y=asm.x
‘ \\ | /F
\
w
X
\EEEARN /
N\ / N\ N| | /
\ V N \_ |
N

X = Ob is the only solution.

d) x = sin”

1

X

L

]

x = 0 1is the only solution.

T e,

| y=sitx =TT/ y= x

Al
)4 LN
238
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e) sin x = e~¥ X ~ .59, 3.12, and so on.
IV e
_y,gx
I\E/
N[\ )
) > v % )
N 7 TN 7
| y=sin. x !

Miscellaneous Exercises
1. a) |sin (wm+x)|= |- sin x| = |sin x|. Periodic with
period .

b) Since [x + 1] = [x] + 1, we have

£x+1) = (x+1) ~[x+1] =x+1-[x)-1
= X - [x] = £(x). periodic with period 1.
¢) ¥y =x sin x. ‘not periodic
d) y= sin® X, sin® (7 + x) = [~ sin x]2 = sin® x.

perliod .

2

e) ¥ =8in x not periodic

£) y=S X+ 208X mnyg4g not defined if
sin x =-:L9%§—§-3 or tan x = --% , and therefore at

X = tan'l(--%) 4+ nm. Defined for all other values of x.

239




2.

3.

8)

h)

The
'[O’

231

sin (x + 7)) + 2 cos (x + 1) - 8inx - 2 co8 X

£(x + T) =5 gin (x + 7) + cos (X + ) - - 2 sin X - cos X

8in X 4+ 2 cos8 X - f(x).

="5"sin X + co8 X Therefore periodic

with period .

y = sin x + |sin x|

sin x is periodic with period 2w

|sin x| - is periodic with period

‘ The sum 1= perlodic with period the 1lcm of 2r and T,
or 2. '

y = sin:x + sin (+/2 x)
sin x Is perlodic with Qeriod er

gin /2 X is periodic with per=od 2r

V2

But ‘there_ s no 1lcm of two imcommensurable numbers, and
therefore no period for the function,

decimal expansion of %—%—8— is .2.121(3; hence the range 1is
1, 2}

£(x + 4) = £(x) .. periodic with period 4.
£(97) = £(1 + 4e24) = £(1) = 1.

+2) = £(x) £(-x) = - £(x) £(3) = 3

£(3 + 22) = £(3) = 3

)
P oY
ko
S
i

£(-3+4) = £(-3) =~ £F) = -3

H
P ow
[ O]
S
n

£(9) + £(=7) = £(1 + 4+2) + £(-1 + 42) = £(1) + £(-1)
= £(1) - £(1) = 0

-

%?- radians - (22 180) ~ 180
2
T

(2 180 - (36 )

240
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.5.

Te

: k. 2 k
_Area=2.r =5

a)  87° »-
o
b) (’-,2',-) > -.,2;--_555 =-913 radians

©) P> Boolhy = vy radians
S = kp

¢ =2r + kr or r=-§.—_E.i

c®

ke

r :
S
r

2

2+ kF 2k + 2)°

a) y =2 sin 3x : period %’.T.,’ amplitude 2, range [-2, 2].

y .
2 -
y \\
| \
/ \
\
Y . 2 M
. w1 X _1
| x‘ /r L
T 171
b) ¥ = - 3 sin 2mx
 period %= 1 434 L 1 _L
15 )
Amplitude + 3 -1 / \
Range (- 3, 3]
. N b
IR Z AR
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c)

d)

y-2cos%

period % = U?

T
Amplitude 2
Range [~ 2, 2]

y = 6 8in x cos X.
y = 3 sin 2x.

period % = T

Amplitude 3
Range [~ 3, 3]

¥y = 43 8in 2x 4 cos

y = 2(Vr_

Yy=2 8in (2x +'g)

period = %‘r_r =T

Amplitude = 2
Range [~ 2, 2]

-% sin 2x +-]§' cos 2x) but s,:i.n%r = = cos--g~-=

233

12 7
\\ /(
Tf“ﬂ.ﬂ
2wt 4wt
\ A |-
N[/

MQ
2
b3

2x. Transform the function first

1 J3
2 2

2(sin 2x cos % + cos 2x sin g)

21V 7T

[
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8. f: x> 3 cos (21rx+12-r)=-381n21n:
© = 3 sin (2mx + T)
We can use A =3, B=2m, C =T
or A=-3 B=2m, C=0

9. Q=Q, sin 5] L = 0.4 ¢ = 1070
, vLC

t £ ot

VIE o/(8)(207°)  2.10"

Q = Q, sin (500t + %) = Q, cos 500t

7= 500t

a) period = % , frequency = -2-%9

b) Q=0 if cos 500t = O
This is zero for the first time at t = ’]f'ﬁ'%% = 'I'(Tg'ﬁ'

c) Q=.5Q,o 1f cos soot=.5=9§;500t=-’5’ or t = yuis

T T

d) Q= .5Q, for second time 500t = L or t = =5
' 3x CO8 X - co8 2x co8 2X - cO08 X
lo'ta'n2""sirlex--sinx=":s_in2x-sinx

-2 sin %(23: + x) sin %(Ex - x)

2 cos %(2:: + x) sin %—(2:: - x)

' 3x
_snF = tan 3X
cos 3x -
-3
11. Sketch graph of: HfE Y,

M-

T
1T
TIT

a) ¥y =cos x + |cos x| H
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b) y =|sih x| + sin 2x.

Ty [T T T 1]
//-\\l ] l.l l+ls.r la T
= |sin.x in.2x
7 Y | |
N '
=1
/ DT ] y=|sinx|
A N N
1// 4/ f \ A
A A y=sin2x |\ A
P’ \\ N
0 N P7Ae X
\C ‘\\ e
N
Jl P

¥12. Prove:
a) |sin x + cos x| g

2 1 l‘
sin x + cos x| = |+ 2| =sin x + =cos X
| tak; ]

=2 |sin (x +i’f)|
and |sine | < 1. q.e.d.
b) | V3 sin x 4+ cos x| = |2 ——'gsinx+%=cosx:|

= |2]|sin (x +%r)|

g2 since |sine | < 1.
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*13. a) f£(x) =2x+3>x=1(=3 L) -3
- £(x) +2f(yL- 6 -

xX+Yy

f(x+y)=2(x+y)+3=2.ﬁ2ﬂ_'h§f.(.u+3

= £(x) + £(y) - 3

11f({x) + 11f = 13f(x)f - 12

p) f(x+7y) = X) + 3T(y) = BE(xX)f(y) + .

¢) £(x +y) = 2E(X)L(y)
* 14, sin (cos x) = cos (sin x) has no solution.
Proof: For any Y€ R, cos y = sin (1_2" -y)e Put y = sin x; -
then cos (sin x) = sin (12." - sin x)
and the given equatlion then becomes

sin (cos x) = sin (% - sin x)

Hence either cos X = :'é-r - 8in x + onw (2)
or cos X = -7—2'- + sin x + 2nw (b)
From (a), sin x + cos X = 12r_+ ntT = (4n g 1)m
-—-]-"-sinx+ ——]Zcosx=M
e JZ V2
sin (x + ) =—(52—%Ez 1.11 (4 + 1),

which is impossible because there 1s no integer n - such that
(4n + L)
- 1 S_(—_)_S i
24/ 2
Similarly, (b) leads to sin (x - ) = Q0+ 1) nsen

2.J/2
is also impossible,

Ci

24
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15, a) ¥y = sin x
[Also (h)]

o
)
%

4"

b) ¥y =\/1 - cos® x ='\/sin2 X = |sin x|
[Also (c), (£), and (k)]

c) y = |sin x| [Same as (b)]

d) y2 = sin® X, ¥ =+ 8inx [Also (e), (s), N1

+ Ay .
! / / N | A N\

R NTORTOR
| " /2|1r _;4’3?'

e) Same as (d)

24
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2
-~ - 1—
£) vy /1 gosex= 1 - gsin x)_ /sinax

= |sin x|
[same as (b)]
g) y° = sin® x [See (d)]
h) y=2 E;in-’a£ cos 329 = s8in x [See (a)]
' X X | ein 22£|
1) y =2 |sin 5| cos 5 = = 8ln x ——%
' . Bil’l—é‘
sin x OLx<gar
-sinx 2r<x < Ur
Ly
y, N / \
2w N
0 ™ 3w 47 %
T i,\ 7 T N IJ [ 4L

x X cos x/2
J) vy =2 s:Ln-2— |cos -§| = 8in X*.-Lc—m7§—|—

sihn x O0gx<KT
3T < X < b
-8lnx, TLX 3T

A
y
| -
*J N A N |
' V 2 3w 47
w N X
N\ N 4
- | /
k) y=2 |sin32c-cos 329[ = |sin x| [See (b)]

£) y2 = 4 8in® 329 cos® % = 8in® x [see (d)]
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Jllustrative Test Questions

Determine whether each of the following functions is periodie
and, if so, find the fundamental period: ‘
(a) y = |cos 2 x|

(b) ¥y = sin 3x cos 3x

Given that f: x = £(x) 1s periodic with fundamental period
1 and given that £ (F) =2, £.(2) =5, and £ () = 3, find
(a) £ (o)

() £ (-B)

() £ @

Sketeh two complete cycles of the graph of ¥y = 2 sin 3x.

Change from radians to degrees:

(a) 15
(b) %
Change from degrees to radians:
(a) 165°
(b)  2°

What is the radius of a circle i1 which a sector of area 6
has a perimeter 10?7
(two solutions)

Sketch the graph of y = sin x -+3 cos x over a complete
cycle, indicating both the fundamental perliod and the
amplitude.

Express sin (x + 2 y) in terms of sin x, sin y, cos x, cos y.

Express the following in the form + sin x or + cos X :

(a) sin (x +-%¥) (¢) sin (- 37 - x)
(b) cos (%g - x) (a) cos (x + 57)
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10.

1l.

12,

*13.

14,

*15.

16,

Show that
(sin x + sin 2x)(sin x)(1 -~ 2 cos x)

- = (cos x + cos 2x)(cos 2x - —cos x)
holds for all real values of X.

Given sin 27° = 0.4540 and sin 28° = 0.4695, interpolate
to find

(a) sin 27.4°

(b) the angle between 27° and 28° whose sine is 0,466k,

on the graph with smallest positive x for which
(a) the function has the value zero
(b) the function has a maximum value
(¢) the function has a minimum value

If a, b, ¢ are constants, find A and B such that
sin (x + ¢) = A sin (x + a) + B sin (x + b) holds for all
values of x. (You may assume that sin (a - b) # 0.)

- 1
Evaluate (a) cos (sin 1(- 5))
(b) sin (cos™(- 2))
Consider the function £ : x - cos (sin™! x), - 1 < x < 1.
(a) Find an algebraic expression for f£(x).

(b) Wnat i1s the range of £°?
(¢c) Does f have an inverse?

Find the values of x 1n the interval O ¢ x < 2r which
satisfy ' :

(a) sin (3x + %) = cos G% - 2x)

(b) 'sin 2x - cos 2x = —

249
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Answers to Illustrative Test Questions

1. (a2) cos 2 (x +%) = cos8 (2x + T) = - cos 2x

Hence, |cos 2 (x + _7_2r)| = |cos 2x| and the period is

ol

(b) sin 3x cos 3x =% sin 6x =% sin (6x + 2w)

1 T T
=% 8in 6 (x +3) and the period is -3 .

2, (a) £(0) = £(2 - u.%-) =£(2) =5

() £(-g) =~ e - nd) - 23 - 3

() £(F) =G +3) = £(F) =2 .
3. 2 ‘ .
N N
| 44 / \\
[ T / ud
0 o ' 14
. \ 7% \ iisa
\ / X
L N NV
o} . (o] o}
o (a) FEAEQ . 105° (b) £.380° _ 28
°©,.T_ . ilT o.m _.T
5. (a) 1657 =37 () 2% =

6. If the radius 1s r and the arc s, then

%rs=6; 2r + s = 10; %r(10-2r)=6;

5r - 1= 6; 1° - 5r + 6 = 0; (r -3)(r-2)=0,r=3 or 2.
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7. Note that ¥y = sin x -~ +/3 cos x = 2 sin (x -'%) for all x.

? /TN T
| / A\ amplitude=2
/ 27 ‘ 4% 7l -t
o 3 \ = T l
R S S . 7 A
LA \ /
1/ | N A[*
< fund. period=2 W ——3i

8. sin (x + 2y) = sin x cos 2y + cos x sin 2y
= sin x (coszy - sin2y) + cos x#2 8in y cos ¥y
= 8in x coszy - 8in x sin2y 4+ 2 s8in y cos k cos ¥y

or sin x ~ 2 sin x sin2y + 2 8in y cos x cos ¥

9. (a) -cos x

(b) sin x
(¢) sin x
(d) - cos x

10. (sin x + sin 2x)(sin x){(1 =2 cos x)
= (cos x + cos 2x)(cos 2x - cos x)
(sin x.+ sin 2x)(sin x - 2 sin x cos x)
(sin x + sin 2x)(sin x - sin 2x)

sinzx - sin2 2X

1 - cos®x - (1 - cos

cos2 2X - cos2 b.d

2 2x)

(cos 2x + cos x)(cos 2x - cos x)
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11. (a) sin 28° = 0,4695
sin 27° = 0.4540
0.0153
00620
L4540
sin 27.4° = J602
(b) 4664
.012Y «0155

sin 27.8° = 0.L4664
12. (a) - 3 sin (2x +-%) =0

2x +'13r—= O, 71', b 71', [ 'Y
T 2T Yqr

2X = = -§, 5, - T 3 see
T T 21

X = = 7y KL -—3- 3 see

Answer: %

(b) - 3 sin (2x +-§) =+ 3
sin (2x +-%)= -1

> LN ]

ol

. 13 3T
Hrg=F -

2X=%,-%,...
X=%T’_%12_T’...
Answer: -%g
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(¢) - 3 sin (2x +~%) = - 3

13, If x = - a, we have
sin (¢ - 2a) = A sin 0 + B sin (b - a)

sin (¢ ~ a) _ sin (a - ¢)
sin (b - a) ~ sin (a - b) °

If x =~ b, we have
sin (¢ = b) = A sin (a = b) + B sin O

A --Sin (¢ - b) sin(b-¢) _sinf{b -c
“sin (a - b)  58In (b -2a) = " sin (a ~b

14, (a) cos (sin™(- 3)) = cos (- B) = @'
(b) sin (cos™(- %)) = sin %F - yﬁ%n

15. (a) f£(x) = cos (sin"l Xx).

-1 X, then x = sin y and

£(x) = cos y. Hence [f(x)]2,+ x° = cosey + siny = 1

If we set ¥y = sin

]

and [£(x)]® =1 - x°. For -1 < x <1, we have

‘%SYS% and f(x) = cos y > 0. Hence
£(x) =/ 1 - x2
(b) 0 £(x) =+/1 - x> <1

(¢) No. f£(-x) = £(x) for all x in the domein of f,
hence f 1is not one-to-one and therefore does not have

an inverse.
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s

16. (a) Since sin (y + -:'-QT) cos y, we can transform the equation

to cos 3x

cos (% - 2x)
X

cos 3x — cos (= - 2x) = 0

w

Using (5) on Page 370, we obtain
- 2 sin (-%{ + -g) sin (-%x- - -g) = 0, hence

sin (%+%)=0 or sin (%-.‘g)___o
24I-0, mor, ...  ZE-F=o,m er 3, ...
%‘._—__%,"T,'}%E... _%:_ z, 1r131r__g__"_

and the admissable rodts are

¥ % % % B

(b) Using the same transformations as in (a), we find

cos (—1—2T - 2x) - cos 2x = —5

-2 sing sin (f - 2x) = “-/-—g_




Appendices

' 2-11. Mathematical Induction
‘ Both the teacher and the students can have a great deal
of fun with this topic. The section should not be attempted
with a below-average class. For an average class it is probably
wise to eliminate the second princinle of mathematical induction
(and, of course, all exercises which depend upon it) as well as
the Exercises 10 and 11 of false proofs by indwtion. The
false propositions "proved" in these examples are deliberately
-outrageous on first sight so that even the poorest student will
be aware that there is a flaw in the logic, whether or not he
can find it. The flaw in Example 10 1s, of course, that the
initial step fails: 1 1is not an even number. In Example 11,
it is the sequential step that fails; in particular,
Al does not imply Az.

The exercises are graded. Exercises 1 - 12 may be
attempted in any class (of course, omit Exercise 7 1f you do
not cover the second principle.) The starred exercises should
be reserved for the best students. The double-starred exercises
can be used to keep even the very brightest students busy.

Be sure not to give away the show on the starred exercises.
Their purpose is to develop originality. Let the student make
a serious attack on the problem before giving any assistance.
These are very difficult problems, and the student who makes

... Some. progress should be given a good deal of credit, even though
he does not produce a complete solution.

Solutions to Exercises 2-11.
1. (First principle).
Initial Step: For n =1, 5 n (n+1) = 1.

Sequential Step: If the result is true for k, that is, if
1 +24+3 4+ ¢00 + k= % k (k +1),
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then

"

(L +2+3+ -+ +k)+ (k +1) ~% k(k +1) +k+1

(k + 1) (3k + 1)

il

"

-12-(;”1) (k + 2)
g.e.d.

2a. (First principle)
Initial Step: For n = 1,

g [22a + (n - 1) d] = a.

Sequential Step: Denote the sum of the series to the first
n terms by Sn. If the result 1s true

for k phen

Sk_l_l=Sk+(a+kd)

[2a + (k - 1)d] +a + kd

!
OV L Ll v iV L b oy

{ [2ak + k(k - a)d] + [2a +'ékd]}

(ea (k +1) + kd [(k - 1) + 2]}

{(ca (k + 1) + kd (k +1) }

(k + 1) [2a + kd].

2b. (First Principle)
Initial Step: For n =1,

a (2" - 1)
r -1

= a

provided r + 1. (Point out to the class that the sum
formula is not valid when r = 1.)

Sequential Step: Denote the sum of the series to the first
n terms by S, If the result is true for n = k, then

256
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: _ k k
S v 1 =8 tar = SET +ar
o

a(rk - 1) + ark(r ~ 1)
r-1

al (r¥-1) 4+ (X1 - 2K
D - |

k + 1

a(r - 1)

. q.e.d.
3. (First Principle)

Initial Step: For n = 1 we have
1 3 _ _ 1 - -
5 (4’ -n) =3 (4-1)=1

A Sequential Step: Denote the sum of the series to the first
n terms by Sn' If the result is true for n = k, then

o

2
S 4 1 = S + [2(k + 1) - 1]

=

(1S3 - k) + (2% + 1)2
[ (5 - k) +3 (2k + 1)2]
[ (4 - k) + 3(4k° 4 bk + 1)]

[ u(k3 + 3k2 +3k +1) -k - 1]

it
i LE Wi Wl Wl

L3k +1)% - (k + 1)1
4,  (First Principle)

Initial Step:. 2.1 =2 = 2.

Sequential Step: Let us assume the truth of the assertion
for n = k, that is

2X 5 ok,

[sec. 2-11]
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On multiplying by 2 we have

2.2 o 2K + 1 5 o(ok) = 2 + 2k,

On the other hand k 1is a natural number and therefore k > 1.
It follows that 2k > 2 and 2k + 2k > 2k + 2. Consequently,

K+ Ly op 4ok 2k +2=2(k +1).

g.e.d.

5. (First Principle)
Initial Step: If n = 1 we have

(L+p)"=1+p=1+np.
Sequential Step: Let us suppose the truth of the assertion
for n = k, that is

(1 + p)¥ ‘> 1 + kp.

Since p > - 1, (1 + p) is positive, and we may multiply by (l+p)
without changing the sense of the inequality. It follows that

(L+p) XL > +p) (1 +kp)s
but,

l +p + kp + kp2
1 +(k+1)p + kP2

(L + p) (1 + kp)

>1 + (k+1)p,
since kp2 is non-negative. It follows that

(Q+p)¥*L>14+ (k+1)p.
6. (First Principle)

Initial Step: For n = 1 the relation
1 =1+ (n-1)"

is plaiﬁly satisfied,

258
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Sequential Step:

Let Sn denote the sum of the series to n terms.
If the theorem is true for n = k then

_ K
Sk p1 =8 +(k+1)2
=14+ (k-1)2K4 (k+1)2%

=1+ [{k=~1)+ (k +1)] oK

=1 + [2k)2¥

=1 + k2%t 1,

q.e.d.
7a. (Second Principle)

The student may wonder that there 1s anything to prove
here. If the question arises you might point out that a natural
number may have composite factors and that these, in turn, may
have composite factors,and so on. We could not be sure that
we would ever get down to a factorization into primes.

Initial Step:
For n=1 the number n + 1 = 2 is a prime.
Sequential Step: '

Suppose the assertion to be true for all natural
numbers less than or equal to k. For the number k + 1 there
are two possibilities:

a) k + 1 is prime and the result is true.
b) k + 1 has a factor a which is neither 1 nor k + 1.
In other words

k+1=ab
‘where a and b are natural numbers. From a % 1 we have
b #k+1, and from a =k + 1 we have ‘b # 1. It follows
for both that 1 < a,b {_k. Clearly, then a, b are either
prime or factorable into primes and the desired factorization
of k +1 1is obtained by forming their product.

7b. (Second Principle) A
Initial Step: For n = 1, the number U1 is defined to be

&= e 259

[sec. 2-111]



. 252

Sequential Step: Suppose that the assertion is true for
all natural numbers less than or equal to k. We know for
Uk + 1 that there exists natural numbers p, ¢ sSuch that

p+q=k+ 1 and Uk+1=Up+Uq'
Since p 1is a natural number p > 1 and it follows that
q < k. Similarly, from q>l it follows that pgk. But if
p and q are less than or equal to k we have Up= ra,
= Q&a ' ’
Uq_ ga and
LUy, =T, Uy =pa +aqa = (p + q)a = (k + 1)a.
. q.e.d.
N. B. The rare philosophically minded student may wonder how
we could be sure beforehand that such numbers U exist. You .
might point out that what really has been prOVed is that if there
exist numbers Un with the properties described above then they
must be the numbers we have obtaired. It is an easy matter to
verify that the properties are actually satisfied. ‘
3. (First Principle) .
The student should be expected to compile a table for a few
values of the sum Sn to n terms:

_ 1

59 =3
1 1 4 _ 2
S TTtTIFITTI3

T2, A=

55 =3 *t3F #
1l _ 16 _ &
Sy =%+1r-'5-1r-5-§

At this point he will be well on his way to drawing the correct
hypothesis and to establishing his proof by induction.
Hypothesis: For all natural numbers n the Sum Sn. to n
terms of the given series satisfies

=.—-—r-1——-
T n+ 1
. [sec. 2-~11]
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Proof: The initial step 1s already verlfied. For the sequential
step we assume that the theorem 1s true for n = k. We then have

_ 1 -
Sk 41 TS T EF I RS DY

1
K+ 1)K+ 2)

il

Tk+ 1) (k+2)

_ (k + 1)2
"k T+ I) k¥ 2y

= %}f—% . q.e.d.

After the student has worked through this problem
systematically, you may wlsh to polint out a quick proof usiné
the fact that

L 1. 1
i + 1) =W T nyr SO that
1y ,%¢1 1 1 1, =~ 1l _ n
S ==+ (z-5)+ o +E-FT) =l 85T wm

The only trouble with thls 1s that the student may faill to ‘
realize that a proof by mathematical induction 1s stlill necessary.

9. (First Principle)
There are many posslble attacks on this problem. Here we
observe on tabulating a few values of thc sum Sn to n terms:

5, =1
S,=1+8=9-= 32

S5 =9+ 27 =36 = 6°

5, = 36 + 64 = 100 = 10°
S5 = 100 + 125 = 225 = 15°

261
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We conJecture that Sn is a perfect square, in general, and Seek
a pattern to describe the numbers

1, 3, 6, 10, 15, ...
We may observe that

1 =1

3=1+2
6=1+2+3

10 =1+2+ 3 + 4
15=1+2+3 + 4 +5,

From the result of Exercise 1 we therefore conjecture that
1.2 2
S.= 7 n°(n + 1),
groofﬁ

Initial Step:
S, =1 is satisfied.

1

Sequential Step: If the hypcthesis is true for n =k

then ’
- 3

Sp 4 17 Sk+(k+l)

T3 kP +1)% 4 (k4 1)
=3 0B (ke +1)% 4 M+ 1) )

2

=3 (e 4+ 1)°K% + Bk + 1))
_ 1
=T
. q.e.d.
10. (First Principle)

There are many ways of doing this problem. Perhaps the
simplest is to observe that the n-th term is simply n2 + n
8o that the sum S of this series is obtained simply by adding

the result of Exercise 1 to the sum of the sequence of aquares
obtained in Example 7. We have, then
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S, = % n{n + 1) + % n(n+1) (2n + 1)
= % n(n + 1) (2n + %)
= % n(n + 1) (n +2).

To prove this result by induction we observe first
that the initial step 18 correct. Next, if the result is
correct for n = k, then

Sp . 17 S *+ (k + 1) (k + 2)
= % K (k+1) (k+2)+ (k+1) (k+2)
= % (k1) (k+2) (k+3).

: qg.e.d.
You might remark as an interesting sidelight that this
result also demOnstrateépthat the product of three consecutive
natural numbers is divisible by 3.
11. (First Principle)
Let Ak be the assertion that for any k + 2 points

Pl, P2, l‘.., Pk + 2’
S = m(PyPp) + m(P2P3) + ew o+ m(Py  Pyio)2 m(ByP o).
Inltial Step:
A1 is certainly true since it merely states the trlangle
inequality. 1

Sequential Step:
If Ak is true then

Ser1 = Sy + M(Py oPys)
> m(PyPy,p) + WPy Py, 5 )om(Py Py )

where the last step follows from the triangle inequality.
qg.e.d.
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12. (First Principle)
Initial Step:
For n =1 the product contalns Just one term

(1 +2) == (x+1)>2,
Sequentlal Step:
If the assertion 1s true for n = k then, denoting
the product of the k factors by Pk we have

- 2k +
Pk+1—Pk(1 +—.§__2.)

(k'+ 1)

(K + 1)2 /o ok 4

‘ ’2(1 ey
(k + 1) + (2k +.3)
2

]

(k + 2k + 1) + (2k + 3)

k2 + 4k + 4

]

(k + 2)2.
' q.e.d.

.~

13. (Second Principle)
Let U = n(n2 + 5) for all natural numbers n. We note

that Un 18 a cubic polynomial in n. It 1s easy enough to see
that the difference

Vo=U, -V, 1 |
1s a quadratic polynomial in n, and similarly that’
Wpo=Va-Vhoa® U, -2, .3 +Uy_ 2

:
is a linear polynomial in u. Thils suggests that we form
successive differences in this way to obtain something simpler
to work with. If it turns out that V, 1s divisible by 6
then we may use the first principle to show that

Un =V *Uh o2
1s divisible by 6. If not, we may go on to the next difference.
If W, 1is divisible by 6 then to obtain the deslred result

from 2 04
[sec. 2-11])
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Un = Wn + 2U -U

n-1 n- 2

we must use the second principle. If Wn is not divisible by
6. we continue in the same way. This technique works for the

“most complicated of this kind of divisibility problem and you
may wish to suggest to the student that he lhvent his own
problems.

First we observe that Uj = 6 8o that the result is

certainly correct in that case. Next we assume the result is
true for all natural numbers less than or equal to k. We have

Ve +1 "0k "% T (k+ 1) [(k+ 1)2 451 - k[¥2 + 5]

[(k + 1)3 -1°] + 5(k + 1) - 5k

1l

3k2 + 3k + 6

il

3(k° + k + 2). |
(It follows from the first principle that Uy

is divisible

. + 1
by 3.)
Proceeding one more step we have
Ve b1 Ve s 1" Yie " U1 7 et U o n

3 (k2 +k+2] - [k-1)24 (k-1)+2])

]

= 6k.
g.e.d.
It follows that ’
Up 1 =20 =0 _ 4+ 6k. (1)
Hence, since U, and Uk , are divisible by 6 we see that
Uk + 1 1s divisible by 6.

It is good to point out to the student that the proof is not
complete at this point since the argument going from k to k + 1
must be valid for all k. In this case equation (1) 1s
meaningless for k =1, Qiﬁce U, is undefined (Un is defined only

for natural numbers n). There are two ways to. surmount this

difficulty.
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a. Simply extend the interpretation of the formula for
U, so that U, = 0. The method of backward extension

is often quite wuseful.
b. Let the k-~th assertion Ak be that both Uk and Uk+1

are divisible by 6 (rather than Just Uk') To prove

the general result it then becomes necessary to establish

both U, = 6 and U, = 6:3 as special cases in the

initial step. (This method is quite general. Note

that 1t 1s similar to a proof of the secohd principle

by the first.)

*1h, (Second Principle)

This 1s a problem for which the methods of proof are
diverse. Most usually, the student will probably discover that
the payments are in arithmetic progression beginning at the
leader, going around the circle and returning to the leader again.
He will then realize that all payments must be equal. Here is
another approach. ‘

Let us suppose there are n pirates in addition to the
leader. We assume n > 1;'otherwise the result i1s obvious.

Let P be the amount of payment to the leader-and let Pl’ P2,

0
s P be the payments to the other pirates going to the

n

right from the leader around the circle. Except for the leader,
we know that each pirate receives a payment equal to the average
of the two men on his right and left. It follows that for

1 <kg<n-1we have
P -1t Py

(1) | Pk= o] (k=1:---:n"'1):
and for k =n Pn o + PO
(2) P, = 5 .

We consider three cases: P1 is equal to, 1is grea%er

than or is less than PO'

a. Suppose P, = P.. Then from

1 0 P ,
_Po* P

1"~ =7 "o

200
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we have

P2 = PO.

Now if it 1s true that Pk = Pk -1 Ve have, followlng the same
P14 P

Py g =P o

and, therefore, ‘
P 1™ Py
It follows by the second principle (if for all natural numbers J
less than or equal to k the values of Pk. are all equal to
P, then P, = PO) that, in so far as formula (1) holds,
all yalues of P = PO. In other words

e 'i.,‘ Pk":‘"R"’Oy fOI‘ k = l, v ey n = l.

(o]

For k =n 1t follows from (2) that

We see then that i1f the man on the leader!s right gets the
same amount as the leader, so does everyone else.

b. Suppose Pl < PO. Then from
) PO + P2

31

we have
P2 = 2Pl - PO = Pl + Pl - PO < Pl + PO - PO = Pl < PO

Assuming that PJ < PJ -1 < PO for all natural numbers J such

that J < k we see by applying the same argument to
Ppe 1 =2F - B Ly

that Py | 3< (Pk + Py l) =P -1 <P <Py ynsofar as
formula (1) holds. For k = n we have, in particular
P, <P, _3 <P,

But, from (2) Qi
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P, =2P_ - P
0 n n-1¢< (Pn + P 1) - Pha1¢ P <Pg
. ‘ 3

a contradiction We conclude that‘the man on the right cannot
receive less than the leader.
c. P1 > P0 By an argument exactly paraldel to that

‘ of (b) 1t can be shown that this is not possible.
Conclusion: Comkining the results a, b, c¢, we see that the
loot may only be divided into equal parts.

%15, (First Principle)

First we begin with the prqgf that pn and a, are
relatively prime, that 1s p
greater than one.

Initial Step: The assertion is true for n = 1.

and q. have no common factor
n @ N ‘

P
Sequential Step: Suppose the assertion is true for EE.
We prove 1t for Px + 1 . From ' k
Y + 1
Py 4+ 1 = Pk *+ 29 Qe 41 TPt %

we obtain

P =29 .1 " Pr 41,
P =P 1~ % 4+ 1

It follows at once that any common factor of pk + 1 and QY 4 1

is a common fuctor of Py and Q- Since 1 is the greatest
conmon divisor or pk and Qs - it must also be the greatest
common divisor of pk +1 and Qe 4 1°
q.e.d.
For the purpose of answering the rest of the question
we define the error at the n-th stage of approximation as

e =Pn - 2.
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Now, let us attempt to represent e +1 in terms of ek. We have

p p, + 2q
_ k +1 k Kk
e = X3 . Vo= FE___X . /2
k+1 U + 2 P +
. Pe/%) 2
(plqu)+l V2
(e + V2) + 2
= = /2

(6 + /2 + 1
(ek+ V2 +2) - ~/—2'(ek+ V2 + 1)

(ek + 2 +1)

= (1 - +2) ek+(~/§+2)-(2+‘~/§)
e, + V2 +1

_ (1’;)/—2_)91(.

h e V2 +1

In order to simplify the work we multiply the numerator and
denominator by 1 + V2 to obtain '

Tk . (1)

®k + 1 '
(VB +1)% +e (v2+1)

From this result we shall obtain all we need. Two things are
clear from (1). If e, 1s small enough, 1t will have little
effect in the denomlnator; the denominator will be positive,
even greater than one, and ek + 1 will have opposite sign
. From S

First we observe that|e1| = |1 - «/§| <1l., 1If |ek| <1 we
show that |ek + 1| < 1. In order to prove this we observe for
the denominator D, ., in (1) that

D& + 1

1]

(V2 + 1)2 + ek(~/§ +1)= (V2 +1) [V2 +1+ ek]
( v2+1) [V2+ (1 +e) ]

fh

Since 1 + e > 0 it follows that
(2) Dk+1>J§(J§+1)=2+J§>2 S1.
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Entering this result in (1) we see that

. ) 'ek

() |ek+1|=D;'l+_I<|ek| <1l
“7 " 'We have proved by mathematical induction‘that‘“'ehl<“1’for“”“““
"~ all natural numbers n but we have proved more. Since the
denominatof Dn +1 is positive it follows immediately from

(1) that the error alternates in sign, since e . ; = -en/Dn 1

We have noW only td prove that the error can be made as small
as desired. In fact, we shﬁ%l prove that
llen + 1‘ < 'é'n (n = 1, 2, 3, ..-).
Initial Step: For n = 1, we have '

le I _ Ie |= \ V2 -1
2 1 UVZ2+1)J 10 ve+ 1)+ (1 -/2)]
5, v
V2 -2 _i(2-1) 1
= B Je+1y “z\sEFI )T

Sequential Step:
From (2) above we have proved D, >2 + Y2 > 2 for
all n. If

o w1l <%

then -
|ek+2| = lek+1l < 1 < 1
: D 41 2D, 5 X o
< XTI

With this result, the proof is complete.

*¥16. (First and Second Principles)

In solving this problem, as in many other mathematical
problems, it pays to turn things around. Instead of thinking
of q(n) as the sum of p(l) + p(2) + ... + p(n), we may think

of p(n) as the difference
[sec. 2-11]
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p(n) = a(n + 1) - a(n). (1)
This relation suggests a converse to the theorem we wish to prove;
namely, that if q 1s a polynomial function of degree m + 1
then there is a polynomial function of degree m for which (1)
~ holds. We have already made use of thils theorem in the solution
to Exercise 13. :
With this idea in mind, we are led to the following attack
on the original problem: tazke a polynomial function of degree

m + 1 (preferably the simplest one, u: x—>x™ 1), form the
difference

r (n) = u(n) - u(n - 1), (2)
and compare r(n) with p(n). We note that

r(1) = u(1) - u(0)

r(2) = u(2) - u(1)

r(n) = u(n) - u(n - 1)
and hence,adding

(1) + r(2) + . . . + r(n) = u(n) - u(0)
= u(n) ' (3)

since u(0) = o™t 1o, (The result (3), though obvious, should -

itself be proved by mathematical induction; a proof by the first
principle 1s easy.) .

Our assertion A, is: if p is a polynomial function of
-degree k, then thre exists a polynomial function q of degree
k + 1 such that’

a(n) = p, (1) + p(2) + . . . 4 ) (n)
for each natural number n. ' '
Initial Step:
In this case, pl(x) = A + Ix, and the sum
p, (1) +p(2) . . .+ P, (n)
is an arithmetic progression with first term A + B and common
difference B.
Hence, by Exercise 2,
p, (1) + p(2) + . . . +p; (n)

il

B{2(a + B) + (n - 1) B]
_ gne + (A + g)n,
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B, 2 B
and the polynomial function q: x—>zx" + (A +§) X,

of degree 2, has the required property.
Sequential Step: We suppose that the assertions Ay, As,
o Ak ‘are all true, that is, the result ks'proved‘for

~ polynomials of degree at most k.

We may write any polynomial of degree k + 1 1in the form
Dy 4 1 (%) = ax* T 45 (x) (a £ 0) (4)

where Sk(x) is of degree k at most. Since, by our induction
hypothesis, the sum

8, (1) + S(2) + . .. Sk(n)
is the value aﬁ X =n of a polynomlal of degree at most k + 1,
we need not concern ourselves with the contribution of Sk and
can devote our attention primarily to the term axk + 1. We set
Q(n)=pk+l(l)+pk+l(2)+" '+pk+l(n)’

-and,using (4), we find

a(n) = a[lk IR A i]

: + [8,.(1) + 8.(2) + ... +8,()] (5)
We wish to compare this with the sum obtained in (3). We therefore
define, by analogy with (2),

e )

If we expand (x - 1)+ 1 by the Binomial Theorem and comblne
terms, we obtain

il

L+l _[?m +1 (m+ 1)x™+ . . . +( 1)+ l]

(m+ 1) x™ + - l(x). (7)

r,(x)

where t  _ 4 is a polynomlal of degree m - 1.

Because the Binomial Theorem also demands proof by induction, we
include a special proof of (7) at the end of this discussion of
Exercise 16.
We have, from (3) and (6), (8)
_.m+ 1
rm(l) +rp(2) + ...+ rp(n) =n
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From (7).

m

x ™= gyl (x) - ty L (x)]

”“aha; setting m = k + 1, we get

3k e aln 1 () - ge(x) 1

Substituting this result in (4), we have

: P 4 1(%) = pplne 4 1(x) - felx) 1+ Slx)

bry l(x) + vk(x) (9)

a a

where b = = # 0 and vk(x) = Sk(x) - T¥T t, (x) 1s of

degree at most k. We now substitute (9) in (5) getting
aln) =vlr, . @)+ @)+ . ook, 1(n) ]

+[vk(l) + vk(2) + . o« + Vv (n) ]

=k t 2, v (1) + (@) + . ..+ v (n)].

by (8). Our induction hypothesis asserts that
vk(l) +v(2) + ... Vi(n) =w. | 1(n).
where w is a polynomial of degree k + 1 at most. Hence
k+1 k + 2
a(x) = bx + W, . (x)

is a polynomial of degree k + 2, and the induction is complete.
We must now prove (7)
rm(x) =xmtlo(x-)* Lo m+1)d™+ LI l(x),

Initial Step:
If m= 1, we have
x2 - (x - 1)° =2x - 1.
Sequential Step: _
Assume the result is true for m =k. At the (k + 1)th
stage, we have 273
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k 2 —
ro, () =X TR (x-1)tE

H L x- (x -1)] +~(x -,1)rk(x)

&t (x -1) [k + l)xlc + 5 _ 4(x) ]

Kt (k + T S ¢ 1)xs (x—l)t#_l(x)

(k +2) x¢ +1

+ b (x)

where tk(x) = =(k + l)xk + (x - l)tk . (x) is a polynomial of
degree at most k. This is the desired result.

%%17.a (¥rst Principle)
It is easy to see that we can never have f(m) =g(n),

since 9 = 32 and consequently g(n) 1s an even power of 3
for all natural numbers mn, while f(n) 1is always an odd power
of 3. ‘We must therefore show only that m =n + 1 18 the
least natural number m such that f(m) > g(n). It is
. convenient to break this into two parts

a) f£f(n +1) > g(n), and

b) f(r) < g(n) for all r < n.
We first examine (a): £(n + 1) > g(n). ' (1)

This means 3f(n)> 9g(n -1) _ 328(n‘1)(n>1)

.. 4, alnce x —€>-3x. is a strictly increasing function ofx,
£f(n) > 2g(n - 1)

or, since f(n) and g(n - 1) are natural numbérs
f(n) >2g(n - 1) + 1. (2)

But (2) implies
jf(n) > 32g(n 1) +1 _ 3. 9g(n -~ 1)

or f(n + 1) >3 g(n) = 2g(n) + g(n)
or, since g(n) is a natural number anc therefore g(n) > 1
£f(n + 1) > 2g(n) + 1. (3)

We have thus proved that (2) 1s equivalent to (1) and implies

(3).
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This i1s all we neéd-to prove (a). Let our assertion A_ be
f(n + 1) > g(n). n
o Initial Step:
If n = 1, we have .
£{(2) = 27 > 2g(1) +1 =29 + 1 = 19.
This implies, as we have shown, that
1(2) > e(1)

and Al is thus verifiled.

‘Sequential Step:
' We assume the truth of Ak, which asserts that

£f(k + 1) > g(k).
As we have seen, this 1is equivalent to
f(k) >2g(k - 1) + 1

which implies

f(k +1) >2g(k) + 1
which is equivalent to

f(k +2) > aglk +1).

Thus Ak inplies A
is complete. ,

We must now prove part (b): f£(r)-< g(n) for all r < n.
Since, &8 has been obaserved, x —> 3x is a strictly increasing
function of x, 1t suffices to prove the case r = n.

K + 17 and the inductive proof of part (a)

Initial Step:
;o £(1) =3 < g(1) = 9.
' Sequential Step: Assume f(k) < g(k). Then, since
g(k) > 1, £(k) < %(k) + g(k) = 2g(k).
But f(k + 1) = 3f k), and g(k + 1) = 98(k)= 32g(k), and therefore

f(k + 1) < g(k + 1), which completes the induction for part b)
and thus the proof of the theorem. —

*#18, (First Principle)
Following the hint we obtaln by experiment

P e P e xary) T ) (@ Ty 2T (1)
Set ’

x =1 +.5, y=1- 5 (é)

and ‘
I, = (x" - ynz//ég /5. (3)
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Using (1) and (2) in (3) we obtain
I = (x +y) o=l f5 . I, _1- xy-2n2 NCE I, - o,
2" 5 5
From X + v = 2, Xy = -4 we then have
n n
I = 246, _+2WB I _,
2" 5

n - 2.

In -1 7 I
Consequently, if In-l and In—2 are integers so 1is I,
In order to frame a proof by mathematical induction we use

the first principle and take for the assertion Ak that both Ik

and Ik 4 1 are integers.

Initial Step:
: _ (s - (- AB)
2= 75 g

Il =

L -(6s2 B)y-(-2 dF) .,

I

Sequential Step:
We assume that the theorem is true for n = k.
We have by the argument above.

I v 2 = I 4 g + Iy

The assertion Ak which we have assumed true is that Ik and

Ik + 1 are integers. Consequently thelr sum Ik + 2 is an

integer. g.e.d.

(We could have used the second principle. vpointing out that

Ip + 1 = I+ Ix - 1 preaks down for k = 1, but that the result

that 12 is an 1integer holds anyway.

270
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2~12. Solutlons.
1. Elilmlnate aj by subtraction in palrs obtaining

'+3a1—3a2+9a3=+1

+ 8y + 3ag + Tag = = 4
+ 23, + l2a, + 56a3 =+ 2

Eliminate ay
12a2 + 12a3 = = 13
6a2 + 42a3 = 10
Then
=72a, = =33

3
ag = + %% = + %%
21

]

Since ay + a3 =
13 11 37

2~ "1I2° T TN

~ Ja, - 7a3 -4

sr [3.37 = 7.11 = 4.24]

-~ 62 =31

o . - _ 160 _ 20
Finally, ao =3 al 3.2 3.3 ==sr = —?

a

[}

a

[}

1

[}

2. i%x(x-e)(x-4) + %g(x + 1)x(x-U4) + Q%(x + 1)x(x~ 2)

= iﬁ%‘ﬂ[-‘-se-(x—e) + %—(x+1)] + %’6 (x + 1) x (x —"2)
= 5%5:&1[(‘% +-%)x + (% +-%ﬂ + %5 (x+})x(x—2)
= J—{-g-?é—'é-l}-)-(--33{ + 21) + §% (x + 1)x(x - 2)

x(x-14 (-x + 7) + ﬁ% (x + 1)x(x - 2)

]

=55 [(x = 4)(=x + 7) + (x + 1) (x - 2)]
= g%[lo x - 30] = % (X‘- 3)

Answer: -J-{—(XT-—Z)‘ : 277
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Check: (0, 0): Eﬁégil =0

-1) (=b

(-1, 2): =2
(2, -1): giéll— = -1 .
(4, 2): iéll = 2 T

3- ("l: 2): (0: "1): (2: 3)

g (x) = 2 = (x o 2l Bx(ncs 2)
eoln) = TR e 2) (k- 2)
SB(X) =3 g% : ig %g - 83 = % x(x +1)
g(x) = g (x) + gy (x) + &5 (x)
- 5x2 - bx -3
>

Check: g(-1) =2

g(0) = -1
| g(2) =3
h, A solution by Lagrange's Formula

(-1, 6), (0, 1), (1, 0), (2, 9), (3, 34)

£(x) = 6 xig-ll§f—2?£x:%; s +1 éx+l!§f-12§xz2;§x:§;_+o
X+1 ) (x)(X-=1 J(x- +3 X+1 ) (x)(x-1)(x-2
+ -1 -3 §3+I;53;§3—I;§3-2;

= %-(x4 - 60 4 11x° -6x)- % (xu - 5x3 + 5x° - 6)

-% (xu - 3% - x° 4 3X) + %% (x4 - 20 - x° 4 2x)

= % + 2x° - Ux + 1
Exercises 3-13. Solutions.
1. a) x—>»2x -1
" b)) x->2x -1
c) x—>Ux” - 9x2 + 1
d) x—> Ix° - 9x2 + 1 978
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or x-,x2 + 1

or x——;—x3 + 1
3 4 8x or x-e>x6 - x4+ 8x + 1

5 3 5 3
d) x—a-%f + %— + X or xa-%%-+ §~ + X 4+ 1

2. a) x—X
b) x—x

(23RS I\V]

c) x—>x - X

3, They differ by a constant.

)
b, a) %— at x = 2, or 8/3.

b) x° + x at x = 2, or 6

2
c) xu + %— at x = 2, or 18

(Note different scales)

b) x? +xatx =1 or 2

2 or 10

il

c) X + x at x
d) 10-2-=28

279
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> )
6.. [(16x = %—) at x = 3] - [(16x - %—) at x = 2]

or 39 - (32 - 8/3) =T + 8/3 = 29/3.

2 2
7. [(xu - %—) at x,= 2] - [(x4 - %—) at x = 1]

=14 - 1/2 =13 1/2

8. a) g(x) = 2x° + 2x or g(x) = 2% + 2X + ¢

g(2) - g(0) =20 - 0 = 20 or g(2) - g(0)=(20 + c) - ¢
= 20 .
b) 20.
9. &) g(x)s= 2x° 4 3x or g(x) =2x"+3x + ¢
g(2) - g(l) =14 -5 =9

or g(2) - g(1) = (1% +¢) - (5+¢) =09.
b) 9

10. Since g(x) = h(x) + ¢ where ¢ 1s a constant.
[h

g(5) - &(3) = [h(5) + ¢] - [n(3) + c]
= h(5) - h(3)
280




Appendices

Answers to Exercises 4-15a. Page A-43.
1. f(x+73) =0, f(x) =0, f£(y)=0; hence (6) becomes
0 = 0°0. This function does not satisfy (3) because division

by zero is not defined. The function f 1is x -~ %{%}-and is
jtself not defined in the case g(0) = O.

2. f(x+y) =1, f£(x)=1, f£(y)=1; hence {6) becomes
1 = 1-1., This function also satisfies (3).

3. Equation (3) takes tne form

Af(x +¥) _ Af§u + ¥)
Af{x: u

f(x)-fly) _ _flu)-f
or —_i?%ifl = 5 since f satisfies (6),

or £(y) £(y),
and (3) is therefore satisfied.

Answers to Exercises 4-15b, Page A-4L.
1. If f: x> mx + b, then
f(x +y) =m(x +y) +b,
P(x)F(y) = (mx + b)(my + b) = mexy + bm(x + ¥) + be.
These are the same only if m =0 and b =0 or 1. Hence,
4f mA£O, f: >mx +b 1s not a solution of Equation (6).

2, If f: x - x°, then

£(x +¥) = (x + %)%,

£(x)f(y) = x°¥°.

In particular, if x =y =1, then (x + y)? £ x2y2. " Hence,
£(1 + 1) £ £(1)f(1), and Equation (6) is not satisfiled.
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Answers to Exercises 4-15c. PageA-U5,

l., Since 0*a =0 for all real numbers a, then, in particular,
O+sa =1 1s true for no real number a.
Hence, f(x) # 0 for any x.

2. Since f(x) ¥ 0 (from Exercise 1), we may divide Equation (8)
by f(x). This gives the required equation.

Answers to Exercises 4-15d. Page A-UT.

1. f(x +vy) = £(x)£(y)
Let ¥y = 2x
f(x + 2x) = f£(x)-£(2x).

But we Jjust proved that

[f(x)]e. Hence
[£(x)13

2. To prove f(mx) = [f(x)]™ for all positive integers m and
real numbers Xx.

f(2x)
£(3x)

]

a) Irltial step: f£(1+x) = [£(x)]} 1is obviously true.

b) Sequential step: If f(kx) = [f(x)]k for any positive

integer k, then f£[(k% + 1)x]

f(kx + x)
f(kx)f(x) by Equation (6)
[f(x)]k f(x) by the induc-

tion hypoth-
_ [f(x)]k +1 esis
Ge.€.d.
Answers fo Exercises 4-15e. Page A-U9.
1. £(1/3) = 223 £(1/5) = a/5 £(4/5) = a*/>
7/
£(1/4) = ol £(2/5) = a2/5
£(3/8) = a3 £(3/5) = a%/>
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2. f <—$§ll

_ 5371/1000
1600 /) =
3. f(r) = £(r+1) = [£(2))F =1¥ =2 by (13).

If a and r are both positive rational numbers, then so 1s

% , and we have

£(r) = £(Ea) = [£(a)]/2 =272 24,

using (13).

Answers to Exercises 4-15f. Page A-51.

1. f(r) = 1%

af(r)

283
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Answers to Exercises 4-15g. Page A-51.
1. f 1is the function log,: 1oga(xy)

1oga X + 1ogay.

2. a) f(0 + 1) = £(0) + £(1),
but 0+ 1=1,
£(0) + £(1)

and since f 1s defined for all real numbers, f£(1) is
a number and can therefore be subtracted. This gives

i

so f(1)

i

0 = £(0).
b) f(x-x) = £(x) + £(-x)
£(0) =lf(x) + f£(-x)
0 = £(x) + £(-x)
Hence

f(-x) = -f(x)
e) f(x + x)
f(2x)

£(x) + £(x)
2r(x)

Similarly, f£(3x) = 3f(x), f£(ix) = 4f(x), and so on.
Proof that f(mx) = mf(x).

Initial Step: f£(l-x) = £(x) = lef(x)

Sequential Step: Suppose f(kx) = kf(x) for some natural
number k. Then. .
fl(k + 1)x) = fkx + x) = £(kx) + _ j by (A)
"kf(x) + f£(x) by the induction hypothesis
(kx + 1) £(x) .

"gee.de.

[sec. 4-15]




278

*h)

Write n for m in (E): f(%) == £(x)
Now put mx for x: f(%?) == f(mx)

omf (x) by (D)

ol [N § I %

or f£(8.x) = 2.£(x) for any natural numbers m and n.
n n

Any positive rational number can be written in the form

%, where m and n are natural numbers. Hence we have
f(rx) = rf(x)

Iif r = 0, we have
f(rex) = £(0°x) = £(0) = 0 = 0.-£(x) = r-£(x) by (B).

If r <0, then -r > 0 anc

f(rx) = -f(-rx) by (C)
= -(-r)f(x) vy (F)
= rf(x)

f(r) = £f(rel) = rf(1)

for all rational r by parts (e) and (f). But
£(1) = a,

hence f(r) = ar.

If x 1s any irrational number, there are rational
numbers r and s such that

r<¢ x< s
and such that x-r and s-x are arbitrarily close to

zZero.

We have,
f(r) = ar, f(s) = as.
If f 1is increasing, a > 0, and
f(r) = ar < ax ¢ as = f(s).
The differences ax - f(r) = ax - ar = a(x-r)
and f(s) - ax = as - ax = a(s-x)
can be made arbitrarily close to zero. If f 1s defined
for all real numbers x and is increasing, the only

43}

i

value f(x) can have is ax.
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The argument when f 1s decreasing, and hence a < 0,
is similar. Tne required conclusilon follows, f(x\ - ax,
a # 0, therafore holds.

3. f: x—>ax + Db e

Answers to Exercises h.16, Page A-5T7.

1. €997 %1 4 0.01 + 0.00005 X 1.01005
Three twrms were used. (The fourth term is 0.0000001656¢ « « )

. . - x2 xs
2. gy(x) = 2 +x +Fp +37 + X
X2 |
gyt (x) = 1+ x + 57 + bayx ‘
2 3
=1+X+35T+73] < gl
Hence, a) = n%ﬁl ) ET
- 3 )
gs(x)=1+x+%1+§‘r+%'f+a5xs
L2 43 b
g5'(x) = 1 + x + 1 + 37 + 585%
) 3
=1 4 K+ )5f'T+':':§T+Tf=gu(X)

2 n-1 n
= P ST X X
3. h3(x)_1+x+21+ + 5T T Tl

-2 n-1 -
hat(x) =1+ % + =+ + Tag)1 *(n-D)T
hy' (x) > hy(x)

n-l n-l1 n
cxX X cxX
it (n-1)1 > n-1)1 Y

or §c-l)xn'1 N ox”
: n-=1){ ni
This simplifies to x < n(Eél .

[sec. L4-16]
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L
21
1

22

b e>1 4+ 1+ 2.7167

2¢e

e <l + 1+ 3T 2.7250

Tjro ]

1 1
t3r Tt
1 1
+-§T+7_ﬁ-+

Answers to Exercises U4-17. Page A-61,.

1. €922 = (912 % (1.105)2 % 1.2210
9% = (e0+2)2 % (1.201)2 % 1.14908
98 = (9°%)2 3 (1.1908)2 % 2.2005
e = (e9°2)(e2+8) ¥ (1.221)(2.2205) % 2.71%.
10
2. loglo(eofl) = 10 1ogloeo’1

~ 10 log,41.105 X 10 (0.04336) = 0.4336

Antilog 0.4336 X 2.71%, so that e ~ 2.71k

el.2 0.2)

3. = e(e = (2.71%)(1.221) ~ 3.3133.

(9% (e2°8) % (1.2908) (2.2005) X 3.3133.

From Table 4-6, el*2 % 3,3201.

el.2

Answers to Exercises %-18. Page A-6l.

Y- 3 ]l
1. 1n(1.2) = In(1 + .2) = 0.2 - (32) + (’g) - ii%l + E

0.1822666 ... + E

~ 0,182267 + E.

5
Error = E ¢ i&%l— = 0.00006%, Hence 1n 1.2 % 0.1823,.

N tiad (2 - 1) 1
2. Using (1) to calculate 1ln 2, the error E e i

Therefore 1f E ¢ 0.001, we must take = ¢ 0.001, so that
n > 1000,

288

[sec. 4-18]




281

If n is fixed and we increase u (u > 0), the error
Ot 1
n + 1
can offset this by increasing n. As u gets close to
1, however, this gets increasingly difficul%, and, 1f
us>1l, E gets completely out of control and actually
increases with increasing n. It is therefore not
surprising that (1) is not efficlent for u =1, that
is, at the very threshoild of a region in which it does
not work at all. The graphs in Figure 4.12b illustrate

this situation. )
2 3
in 0.8 = - [0.2;+ ('g) + ('3) + ('ﬁ) ] + E X - 0.22307.

E = also increases. So long as O gugl, we

1n 0.72 = 1n 0.8 + ln 0.9 X - 0.22307 - 0.10536 ﬁ\;“ 0.32843.
1n 1.44 = 1n (1.2)2 = 2 1n 1.2 X 2(0.182267) % 0.36453.

[ u ~s
ln 2 = 1n %—_—% = 1n 1.44 - 1n 0.72 % 0.69296.

The device used is to write

In X = - ln(%) = - 1In(l + ). -

‘Now if O ¢ x ¢ .5, then

312>2 and u > 1.

But we know that the approximation (1) for 1n(1l + u) cannot
be used when u > 1.

To find 1n 0.25 we may proceed as follows:
in 0.2% = 1n(1/4) = - In 4 = - 2 1n 2.

From Exerclse 6, 1n 2 ~ 0.69296.
Hence, 1n 0.25 % -2(0.69296) ¥ - 1.38592.

289
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Answers to Exercises 5-15a. Page A-69.
l. 169 feet,

2. 440,

3. Angle of rails inclined to horizontal is approximately 1.70.
Rise 1s approximately 270 feet.

4, 12.9 inches,
.5, 13.1 inches.
6. 13,700 feet.,

Answers to Exerclses 5-15b., Page A-72.

lo a) a = 809
b) ¢ = 120°
c) o€ = 11—0’ g = 115-0, 7 = 550

2. Largest angle is opposite 12 side and = 1170.

2 _ a2 + b2
2 _ a2 + b2

3. a) d
b) 4d

- 2ab cos @

- 2ab cos (180° -9 ) = a° + b2 4+ 2ab cos 6
c) Area of/_7 = ab sin g .

b, 4,8" anda 13.3".

5« Approximately 115 miles.
' 2

Dhpas ~

2

6.7a) If7” =180° then o2 = a? + b2 - 2ab(-1)
c2 = a2 + 2ab + b2
¢ = (a + b)2

c=a+b (No triangle exists; it is
a straight line.)

[sec. 5515]
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7. a) 1+cosax (b+c+a){(b+c-a)
. 2 = 4pve

Ube + Ubec cosa = 2(b2 + 2be + ¢° - a?)

Ybe cos A = 2b2 + 2c2 - 2a2

-
2be cos = bS + c® - a°

a2 = b2 + 02 - 2bc cos a (Law of Cosines).

Since these steps are reversible, the deslred conclusion
follows from the Law of Cosines.

b) 1 -cosa _(a+b-c)la-Db+c)
2 - 4be

bbe - 4be cosa = 2(a’ - b2 + 2be - ¢°)

- bpec cosax = 2a® - 2b2 - 2c°
- 2bc cos = a2 - b2' - c2
2 2 2 ’
b“ + ¢ - 2bc cosSX = a (Law of Cosines).

Since these steps are reversible, the desired conclusion
follows from the Law of Cosines.

Answers to Exercises 5-15c. Page A-T7.
1. a) ad = 820; a = )'l'3.6
b) & =75 a=14.6; ¢ = 17.9

¢c) No solution

d) No solution

e) & =15°
£) g = 47° |
g) & = 61°30' (Interpolate)

n) ¢ 90.8; « = 31°.
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2. sin « =.§t_._&%_nf
: a sin~ a
gin « - sin/~2 _f——b—'— - 8in/~ _—F_l_a-b
Sin &+ sing ___b__a sin®  , sing ++1 &+ Db

Answers to Exercises 5-16. Page A-T8.

Exercises 1 to 25 are proofs that, in our opinion, require no
comment. ’

26. % + onm, '561[ + 2nm

[
27. % + nm, L+ nw
28. % + nmw, -557-T + nmw
29. nmw
30. -7-2"+n1r,%+2n1r, -%+2n1r

31. n1r,-g+n1r, —%+n1r
32. ¥+ 2nm, 2L 4+ onw

33. nm, % + 2n'ir, -E%'- + 2nmw
34, % + nm

35. 2nm, '13T + 2nmw, - % + 2nmw
36. T

37. -g + 2nm, %’—T + 2nmT, =5 + 2nw
38. T

39. (2n + 1)m, % + 2n1r; - -g + 2nw

4o, -g+n1r, -%+n1r
2972
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g
T . T
-6+nv1r,26-+n1r

43. 2nm, %% + 2nm, Eg + 2onm

ko,

4y, (2n + 1), % + émr, i%_r + onT

4, onw

46, % + onm, %TI + 2nT, 3’-215 + onT
47, onmw

48, %r + nmT

49, An exact solution is O. Approximate solutions are 4, kg
(near + -:-g-r), + 7.72 (near + %), and so forth.

' T
50. --g, 0, 5

Answers to Exercises 5-17'. Page A-85.

. 001 00001
1. Sin O.l = 0.1 - 6 + 120 -~ eoeoe

~ 0.1 -~ 0.00017 + 0.00000008
~ 0.0998
From Table I, sin 0.1 X 0.0998.
2. a) Since x>sinx>x—-}§?—, the error E<§—?—
For E < 0.01, x° ¢ 0.06, and X < 0.39.
Hence, the error is less than 0.01 if |[x| < 0.39.

_ x2 x2
b) Since 1 > cos x > 5} , the error E<5T -

For E < 0.01, x° ¢ 0.02, and x < 0.1k,
Hence, the error is less than 0.01 if |x| < 0.1k
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3. tan x =

22

Because only odd powers of x appear in this approximation,
the relationship tan (-x) = - tan (x) 1s suggested.

b, e ® = cos x + 1 sin x
a) eﬂ‘/2 = cos-% +1 sin-% =0+1=1
b) e™ L cosT+1isinmT=-1+01e==1
c) e3"'l =cos 3r+ 1 8in 371 = =1 +0°1 =~ 1
d) em/3=cos%+isin%=%+i'23
e) e°°91 _ cos 0.5 + 1 sin 0.5 = 0.8776 + 0.4794 1

204
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